

Deliverable 7.2 SSB Recycling Process Flow Design

Pro	iect
	000

Call:

Grant agreement no:

Project Short Name:

Funding Scheme:

Project website:

Deliverable No.:

WP/Task:

Issued by Partner:

Confidentiality Status:

PUlsed Laser depoSition tEchnology for soLid State battery manufacturing supported by digitalizatiON 101069686 PULSELION HORIZON-CL5-2021-D2-01 Action Grant Project-pulselion.eu 7.2 Due Date: 31/08/2023 ABEE 31/08/2023 Actual Date: WP7/T7.4 (7.4.1) Pages: 28 Confidential

Authors	Name	Organization/Unit
Main Author	Javier Mayorga; Gabriel Hidalgo	ABEE
Contributing Author(s)	Zeynep Aktosun	ABEE

Approval	Name	Organization/Unit
Technical Reviewer	Artur TRON	Austrian Institute of Technology GmbH
Language Reviewer	Pedro Bertoluci	INEGI

Authorization	Name	Organization/Unit
Project Officer	Monica Giannini	European Commission

Document Information		Chapters	Description of	Author	Document
Date	Version	affected	change	Author	Status
01/08/2023	1.0	All	First draft	Javier Mayorga (ABEE) Gabriel Hidalgo (ABEE) Zeynep Aktosun (ABEE)	Draft
22/08/2023	2.0	All	Integration of comments and suggestions after partners review	Javier Mayorga (ABEE) Gabriel Hidalgo (ABEE)	Final

Date	Version reviewed	Remarks, Corrections	Reviewer	New Status
04/08/2023	1.0	Technical remarks and corrections	Artur TRON	Draft
07/08/2023	1.0	Language and overall content corrections	Pedro Bertoluci	Draft

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the granting authority CINEA. Neither the European Union nor the granting authority CINEA can be held responsible for them

Public Summary

The present deliverable overviews the PULSELiON project's initiative to create a novel recycling process for solid-state batteries. It defines the core **conceptual recycling process flow** for next generation solid-state cells developed in PULSELiON project. The process will be empirically validated and optimized in the subsequent project phases. These phases encompass the recycling of manufacturing scrap and end-of-life/tested solid-state batteries.

The development of such innovative recycling process is grounded in an exhaustive literature review, which assesses suitable and compatible techniques for recycling individual cell components. This evaluation considers the chemical properties of these components and their potential hazards, ensuring a method that aligns with both environmental sustainability and process safety principles.

