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Time-Dependent Deep Learning Manufacturing Process
Model for Battery Electrode Microstructure Prediction

Diego E. Galvez-Aranda, Tan Le Dinh, Utkarsh Vijay, Franco M. Zanotto,
and Alejandro A. Franco*

The manufacturing process of Lithium-ion battery electrodes directly affects
the practical properties of the cells, such as their performance, durability, and
safety. While computational physics-based modeling has been proven as a
very useful method to produce insights on the manufacturing properties
interdependencies as well as the formation of electrode microstructures, their
high computational costs prevent their direct utilization in electrode
optimization loops. In this work, a novel time-dependent deep learning (DL)
model of the battery electrodes manufacturing process is reported,
demonstrated for calendering of nickel manganese cobalt (NMC111)
electrodes, and trained with time-series data arising from physics-based
Discrete Element Method (DEM) simulations. The DL model predictions are
validated by comparing evaluation metrics (e.g., mean square error (MSE) and
R2 score) and electrode functional metrics (contact surface area, porosity,
diffusivity, and tortuosity factor), showing very good accuracy with respect to
the DEM simulations. The DL model can remarkably capture the elastic
recovery of the electrode upon compression (spring-back phenomenon) and
the main 3D electrode microstructure features without using the functional
descriptors for its training. Furthermore, the DL model has a significantly
lower computational cost than the DEM simulations, paving the way toward
quasi-real-time optimization loops of the 3D electrode architecture predicting
the calendering conditions to adopt in order to obtain the desired electrode
performance.

1. Introduction

Li-ion batteries (LIB) have been at the forefront of secondary en-
ergy storage devices, widely used as the main power source for
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electronic devices. The recent transition
to Electric Vehicles (EVs) has further
led to a surge in the demand for LIBs,
thus, leading to a consequent increase
in research, particularly focusing on the
performance enhancement and the re-
duction of production cost of LIB cells.
Among many studies being conducted,
one such is the optimization of the
electrode architecture or so-called elec-
trode microstructure. Such microstruc-
ture, characterized by the spatial location
of the active material (AM) particles, the
carbon additives, the binder, and the pore
network, determines the practical proper-
ties of the electrode and the cell, such as
their energy density, power density, dura-
bility, and safety.[1–5] In turn, the electrode
microstructure is determined by its man-
ufacturing process.

The electrode manufacturing process
widely followed by LIB cell manufac-
turers is a wet process, i.e., it requires
the use of solvents. It can be decom-
posed overall in 3 stages (Figure 1a), one
following the other: slurry preparation
through mixing (from the suspension of
the AM, carbon additive, and binder in
the solvent) following a pre-mixing step,
slurry coating (on a current collector) and

drying, and calendering of the dried electrode. Each stage has
a substantial impact on the electrode microstructure features.[6]
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Figure 1. a) Diagram illustrating the initial stages of the manufacturing process of lithium-ion battery electrodes. b) Schematic representation of our
deep-learning model for 3D electrode microstructure prediction during the calendering process. The approach allows to obtain a time series of the
electrode microstructure evolution during its calendering and allows us to predict the final relaxation of it, all this as a function of the desired CD, which
is used as an input of the model and in the real calendering process. Four phases are defined in the model: pores, CBD, AM, and void (region on top of
the electrode). In the figure, h and hcal refer to the uncalendered and calendered electrode thicknesses respectively.

Consequently, understanding the influence of each parameter at
each manufacturing stage on the electrode architecture is crucial
for optimizing the performance of LIB cells. The slurry stage, as
the initial stage of the LIB manufacturing process, has an im-
pact on the electrode coating microstructure, as well as the dis-
tribution of the binder and conductive additive, affecting its elec-
tronic and ionic resistances.[7] During the drying stage, electrode
layer properties such as microstructure heterogeneities within

the electrode are highly dependent upon the solvent evaporation
rate.[8] Furthermore, it is noted that the drying parameters are
a significant factor in determining the electrode electrochemi-
cal properties.[9] About the calendering stage, it is used to reduce
the microstructure porosity by utilizing a two-roll compactor re-
ducing electrode thickness, and compressing it to reach a tar-
get density. This procedure alters several electrode properties,
such as thickness, porosity, tortuosity factor, and adhesion of the
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electrode to the current collector.[4] The calendering parameters,
such as compression degree (CD), defined as the percentage of
reduction in thickness with respect to the dried electrode, the
temperature, the line load, and the roll speed have a significant
impact on the electrode transport properties and wettability by
the electrolyte.[10]

Besides experimental efforts to examine the impact of manu-
facturing parameters on electrode performance,[6,11] mesoscale
computational modeling has arisen as a valuable complemen-
tary tool to study how manufacturing parameters impact the elec-
trode microstructure. Several pioneering tools supported on this
mesoscale modeling have been previously proposed by us, pro-
viding insights into the impact of manufacturing parameters
on the cell electrochemical performance[12–14] and enabling the
optimization of the fabrication process to diminish the manu-
facturing cost and the environmental effects. While slurry and
drying stages are equally crucial to the final electrode microstruc-
ture, calendering has a more direct influence since it is the
last stage.[15–16] Therefore, the study of the calendering process
is important to understand the performance of the fabricated
electrode. In that line, besides experimental efforts, computa-
tional methodologies have been proposed and used. Addition-
ally, a computational approach allows researchers to investigate a
wide diversity of electrode materials, compositions, initial thick-
nesses, and so on, without the need for physical experiments, sav-
ing resources, time, and reducing the risk of potential errors.[17]

In the context of our ERC-funded ARTISTIC project initiative,
we have demonstrated how innovative experimentally validated
physics-based simulations of the manufacturing process, includ-
ing calendering, are beneficial in understanding the complexity
of the different manufacturing process steps and their interrela-
tionships in order to fabricate optimized electrodes.[18,19,38]

During the calendering process, important properties and
phenomena, such as elasticity, plasticity, and spring-back re-
covery, play a crucial role in directly influencing the final elec-
trode performance. For example, due to applied stress, the
electrode undergoes permanent (plastic deformation) and re-
versible (elastic deformation) changes affecting its porosity,
density, and thickness.[20–22] Similar to plastic deformation,
spring-back effects are also studied extensively from an exper-
imental viewpoint to understand the relationship between the
compaction process and performance in order to manufacture
optimized electrodes.[23] In parallel to experimental studies, com-
putational methods such as the Discrete Element Method (DEM)
have been applied to understand calendering effects on final
electrode properties.[10,15,24–26] Furthermore, the development of
high-performance computing (HPC), for instance, supercomput-
ers and cloud computing services, coupled with a sub-field of
Artificial Intelligence (AI) such as Deep Learning (DL), are re-
sources that can be used to accelerate the battery manufacturing
process optimization as a whole.[25–26] For example, Shodiev et al.,
in our group, predicted electrolyte flow infiltration over time by
using a multi-layer perceptron (MLP) approach.[27] Another study
conducted by Duquesnoy et al. in our group developed a data-
driven fast framework to forecast electrode slurries’ rheological
properties simulated by coarse-grained molecular dynamics.[28]

Similarly, Convolutional neural networks (CNNs) have
emerged as a primarily DL approach when dealing with mul-
tidimensional data input, such as the ones arising from image

processing, taking advantage of the handling of input data
topology.[29] CNNs are made up of three major types of layers,
namely convolutional layer, pooling layer, and fully-connected
layer.[29] The convolutional layer comprises filters, also called
kernels, used to capture the specific features from the input data.
Thus, CNNs are built by stacking multiple convolutional layers
to extract low-level to high-level patterns or features. Pooling
layers, which usually come after convolutional layers, are used to
decrease the data dimensions, thus reducing the computational
cost. There are three main types of pooling layers: max, aver-
age, and mixed pooling,[30] and can be used depending on the
requirement of the study. The fully connected layers are used to
connect neurons between two different layers, as well as process
the flattened features in order to implement the final tasks, for
example, classification or regression problems. The number of
neurons in fully connected layers depends on the complexity
of the problem. CNN architecture follows a hierarchical struc-
ture, allowing the extraction of higher-level features obtaining
lower-level ones by considering proximal spatial correlations.
Therefore, CNN are suitable to deal with time-series datasets,[31]

generally 1D grid topology, or imagery data sets which can be a
2D or 3D grid of pixels. Marcato et al. used, within our group,
the results of a 3D-resolved heterogeneous electrochemical
model to train a CNN, which is then used to simulate with 3D
resolution, the spatio-temporal lithiation heterogeneities of an
NMC111 electrode (in a half-cell configuration) as well as its
corresponding galvanostatic discharge curve.[32]

In addition, CNN, when coupled with MLP or Long Short-
Term Memory (LSTM), makes it possible to perform time-series
forecasting, which is one of the bases of the study presented
in this article. Such combinations also reduce the complexity of
training a DL model.[31] As an example of 3D structure predic-
tion, Pierson et al. employed a CNN-based model to predict the
microstructure-sensitive evolution of 3D cracking paths in a poly-
crystalline alloy.[33] Additionally, Yang et al. present a DL approach
combining CNN and LSTM to predict voltage discharge curves
of 3D AM particle microstructures.[34] Besides time-series stud-
ies, another approach is the generation of 3D image data. For in-
stance, Kench et al. developed a model using Generative adversar-
ial networks (GANs) trained with tomography and/or Scanning
Electron Microscopy images to generate static 3D samples given
some microstructural metrics.[35] However, we believe that the
development of a physics-informed model, like the one presented
by us in this article, able to generate not only the final electrode
microstructure but also to capture the particle rearrangement dy-
namics occurring during the whole manufacturing process, is
necessary to optimize the influence of manufacturing parame-
ters on the electrode architecture.

In the present work, we propose a novel DL model trained with
a physics-informed dataset arising from electrode microstruc-
tures generated by physics-based manufacturing simulations
(Figure 1b). Such dataset consists of 3D electrode microstruc-
tures with realistic active material (AM) particle shapes previ-
ously produced by us by utilizing a computational electrode man-
ufacturing simulation workflow combining Coarse Grained Par-
ticle Dynamics (CGPD) (simulating the slurry and its drying)
and DEM (simulating the calendering of the dried coating).[36]

The data generated by this physics-based electrode manufactur-
ing model is used to train a CNN and further optimize its ar-
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chitecture to predict the 3D electrode microstructure evolution
over time during the calendering process. For validation, we em-
ploy purely data metrics as well as electrode functional metrics to
compare predicted versus targeted microstructures. Such an ap-
proach of combining physics-based calendering simulation and
DL (CNN), which is the focus of our study, and for the first time
in the field of battery manufacturing, will give researchers an in-
novative and powerful tool to analyze complex electrode image
data which can be generated synthetically, through simulations,
or experimentally, through in operando tomography techniques.
We demonstrate our DL model here as a proof-of-concept of the
applicability of CNN for time-dependent physics problems. The
presented DL model demonstrates a predictive accuracy evalu-
ated by different metrics discussed in the following sections. Ad-
ditionally, it allows to study of electrode functional parameters at
different CD with much less computational cost (DL wall time is
15 s per step in comparison to the ≈47 min per step of the DEM
model), keeping its accuracy and paving the way toward high-
throughput screening of the influence of calendering conditions
on electrode microstructure and its optimization. In the follow-
ing sections, we discuss the methodology in detail followed by
the results obtained and the conclusions of our study.

2. Experimental Section

2.1. Data Generation

To generate the data for training and testing, the physics-based
computational electrode manufacturing simulation workflow
was used, which was previously reported.[36] This workflow con-
sists of the sequential linking of the CGPD approach, to simu-
late the slurry and its drying, and DEM, simulating the calen-
dering of the resulting electrode. Details regarding the initial
configuration, particle size distribution, and force field param-
eter values were listed in the supplementary information of our
past work.[36] The CGPD/DEM workflow employed active mate-
rial particle sizes and shapes obtained from Computer Tomog-
raphy and was already validated by experiments showing good
agreement in electrode functional metrics such as tortuosity fac-
tor and porosity.[36]

In the current work, the specific focus was on calendering step
for one electrode formulation: 96% NMC111 – 2% C65 – 2%
PVdF (96% AM and 4% carbon-binder domain -CBD- in the sim-
ulation). Four synthetic electrodes were prepared. For each elec-
trode, seven CD values were simulated: 20%, 25%, 30%, 35%,
40%, 45%, and 50%, resulting in a total of 28 calendering sim-
ulations. Each simulation consists of a series of timeframes that
capture the microstructure evolution over time during the calen-
dering process. For the current work, the compression rate was
kept constant, therefore the number of timeframes (steps) per
CD value was 14, 18, 21, 24, 28, 31, and 35, corresponding to
20%, 25%, 30%, 35%, 40%, 45%, and 50% CD respectively. Each
timeframe corresponded to 75 microseconds of simulation time.

2.2. Voxelization Technique

A 3D conversion technique was used to capture the NMC cath-
ode geometrical shape under uniaxial compression at constant

speed modeled by the simulated data. The data was segmented
into its various material phases and voxelized to rebuild the mi-
crostructure in a format that could be used with the CNN archi-
tecture presented in the current work. In order to achieve it, the
voxelization algorithm was applied to extract particle positions to
create the voxel grid. Specifically, the dimensions of the 3D space
were represented using the size and resolution of the voxel grid.
Each particle was placed into the corresponding voxel based on
its spatial coordinates by discretizing the continuous space into
voxel cells and determining which cell each particle falls into. Af-
ter voxelization, the microstructure was composed of a grid of
76 × 76 × 125 voxels. The dimension of a voxel was 0.4 × 0.4 ×
0.4 μm. Three different voxel values were generated to refer to
a specific material from the original microstructure: 0 for pores,
1 for CBD, and 2 for AM. Additionally, a type 4 was created to
refer to the void generated due to the calendering process. The
Open Visualization Tool (OVITO)[37] package was used for the
microstructure visualization.

2.3. Data Generation

Our 4D dataset (3D microstructures over time) was composed of
28 time series (TS). Every TS was a sequence of m frames, Sn =
[s1,s2,s3,…, sm − 1, sm] where Sn is the nth TS (n = 1 → 28), and sm
is the 3D voxelized microstructure (76 × 76 × 125 voxels) at frame
m. A sliding window of 3 frames was prepared, dividing the total
m frames into sets of observations based on the past 3 lags of Sn.
As a result, the following matrix per TS was generated:

S[n] =

⎡⎢⎢⎢⎢⎢⎣

s1 s2 s3 s4
s2 s3 s4 s5
⋮ ⋮ ⋮ ⋮

sm−4 sm−3 sm−2 sm−1
sm−3 sm−2 sm−1 sm

⎤⎥⎥⎥⎥⎥⎦
(1)

S[n] contains the m frames divided in a sliding window of three
frames, where [n] is the corresponding nth TS (n = 1 → 28).
The target values were given in the fourth column and their cor-
responding attributes or predictors were the previous 3 values
listed from the first to third columns in the S[n] matrix. As an
example, the past lags corresponding to the s4 target value was
[s1,s2,s3]. Then, S[n] was divided into two matrices, X[n] containing
the three past lags and Y[n] containing the target values.

Out of the 28 TS, 24 were taken for training and the remaining
4 for testing. Additionally, 20% of the training dataset was taken
randomly as a validation dataset during model training. There-
fore, the full dataset was divided into 4 matrices, Xtrain, Ytrain, Xtest
and Ytest:

Xtrain =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

X[1]

X[2]

⋮

X[23]

X[24]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Ytrain =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Y[1]

Y[2]

⋮

Y[23]

Y[24]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Xtest =

⎡⎢⎢⎢⎢⎢⎣

X[25]

X[26]

X[27]

X[28]

⎤⎥⎥⎥⎥⎥⎦
Ytest =

⎡⎢⎢⎢⎢⎢⎣

Y[25]

Y[26]

Y[27]

Y[28]

⎤⎥⎥⎥⎥⎥⎦
(2)
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Figure 2. Architecture of the 1D-CNN employed for our time-series electrode calendering simulation. The network consists of the following layers: input
layer, hidden layers (convolution, batch normalization, max-pooling, dropout layers, and fully connected layers), and output layer.

2.4. CNN Model

CNN has been widely used to develop DL models managing im-
agery datasets in several application fields,[33] being a suitable tool
to work with pre-processed 3D voxelized datasets. In the present
work, and for the first time to our knowledge in the field of battery
manufacturing, the DL approach based on a 1D-CNN was used to
learn about time-series data. The proposed 1D-CNN architecture
to train the time series is depicted in Figure 2. For the approach,
we take advantage of CNN image-processing method but apply
the network to a very different set of 1D numeric arrays, even
though the data dimension was originally a 3D voxelized data.
Therefore, the original 3D voxelized data was re-shaped into a 1D
numeric array for every time step (input layer). Through this re-
shape, in terms of the local environment, voxels still represented
correlated local features, adding that they can now be connected
with consecutive time series.

The CNN architecture used in the current work was deter-
mined after an optimization process explained in the results and
discussion section. The optimized CNN architecture was com-
posed of an initial convolution layer using 256 filters and a ker-
nel size of 3. Additionally, a batch normalization technique was
added next to the convolution layer to make the output distribu-
tion more even, reaching training convergence faster.[39] Then,
a max-pooling layer was adopted for a down spatial size sample
of the output, reducing the computational complexity of the net-
work. 1D max-pooling with a pooling size and stride size of 1 was
used. The second convolution layer followed the same structure
and logic explained in the first one. In the third convolution layer,
a dropout technique was adopted to prevent overfitting and im-
prove generalization during training.[40] The dropout rate was set
to 0.2. Before feeding the fully connected layers with the extracted
features a flattened layer was used. At the end, two fully con-
nected layers were included obtaining a flattened 1-D array con-
taining the predicted microstructure which was then re-shaped
into a 3D matrix (output layer).

The model was optimized by minimizing a mean square er-
ror (MSE) cost function using the Adam,[41] optimizer since
it was one of the most stable gradient descent optimizers.[42]

The CNN model was implemented using the Python libraries
Tensorflow[43] and Keras,[44] within the 3.9 version of Python. The
data set was divided randomly into training (24) and testing
datasets (4). An additional dataset was generated from DEM

purely for testing purposes, consisting of 7 calendering degrees
for the same initial microstructure. Then, the training dataset
was divided randomly into training and validation in a ratio of 90
to 10, respectively. The validation set was used to monitor the con-
vergence of the model during the training process. As opposed to
the validation set, the test set was completely withheld from the
training process. It was believed that the total data set composed
of 28 simulations was good enough for CNN to learn recognized
patterns when dealing with time-series data, as shown in our pre-
vious work dealing with 3D-resolved electrochemical simulation
data.[32]

2.5. Evaluation Metrics

In this study, two different metrics approaches were used to eval-
uate the performance of the CNN model: data and electrode func-
tional metrics. As data metrics, MSE, mean absolute error (MAE)
and R2 score were the validation data metrics chosen to evaluate
the performance of the CNN model. During the training cycle,
MSE was used as the overall loss function for evaluation. For test-
ing, in addition to MSE, R2 score was also calculated to evaluate
the performance of the network. R2 score was defined as:

R2 = 1 −

∑Nk

k = 1

∑Nj

j = 1

∑Ni

i = 1

(
vg

(
i, j, k

)
− vp

(
i, j, k

))2

∑Nk

k = 1

∑Nj

j = 1

∑Ni

i = 1

(
vg

(
i, j, k

)
− v̄

)2
(3)

v̄ =

∑Nk

k=1

∑Nj

j=1

∑Ni

i=1 vg

(
i, j, k

)
NkNjNi

(4)

where vg(i,j, k) and vp(i,j, k) were the voxel values of ground truth
and predictions respectively, Ni, Nj and Nk were the total number
of voxels on each axis and v̄ is the average voxel value of ground
truth. For our data, Ni, Nj and Nk were equal to 76, 76, and 125,
respectively.

2.6. Electrode Functional Metrics

The ability of lithium ions to diffuse through the pore network
of the structure is a crucial factor for the good performance of

Adv. Energy Mater. 2024, 2400376 2400376 (5 of 13) © 2024 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH

 16146840, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aenm

.202400376 by C
ochrane N

etherlands, W
iley O

nline L
ibrary on [19/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advenergymat.de


www.advancedsciencenews.com www.advenergymat.de

Figure 3. Schematic representation of the framework presented in the current work, starting from the 3D microstructure data reconstruction from DEM
data, to train a CNN over a time series. After training, the model performance is assessed through evaluation and electrode functional metrics.

electrodes. Since it is highly dependent on the arrangement of
the different phases along the electrode, characterizing it allowed
comparing DL predictions versus DEM results in meaningful
terms. In order to do this, stationary state diffusion calculations
allowed to determine tortuosity factor and effective diffusivity val-
ues across the thickness of the electrode. Fick’s laws were solved
along the pore network, defining periodic boundary conditions
on the outer planes in the x and y directions, and setting Li+ con-
centration as 0 mM and 1 mM on the opposing outer planes in
the z direction.

The effective diffusivity is obtained from the overall diffusive
flux (J) as:

Deff = −J × length∕1mM (5)

where length is the height of the simulation domain. Bulk diffu-
sivity values of the pore and the CBD domains for the purposes of
this calculation are taken from the work conducted by our group
(Chouchane et al.) on NMC morphology and its performance.[45]

From the effective diffusivity value, and directly extracting the
porosity of the system from the geometry, the tortuosity factor
could be calculated according to the McMullin number [46](
𝜏 =

𝜎bulk

𝜎eff
× 𝜀

)
(6)

where 𝜎bulk and 𝜎eff are the pore and effective ionic conductivities
respectively, 𝜏 the electrode tortuosity factor, and ɛ the electrode
porosity.

The diffusivity calculations were performed using the Diffu-
Dict module in GeoDict 2023 (Math2Market).[45]

2.7. Framework

The presented framework started taking as input the 3D elec-
trode microstructures preprocessed from the DEM data through

a 3D voxelization technique. The full dataset, composed of 3D
microstructures over time, was rearranged into a time-series for-
mat, being divided into input, 3 consecutive time samples, and
output, the next time sample. Then, the CNN model was trained
from this time-series dataset. After training, the CNN model pro-
vided output as the evolution in time of the 3D microstructure
under the effects of a set CD. Then, the output of the model
was evaluated through two kinds of metrics: one based on purely
data comparison, and the other one comparing essential elec-
trode functional properties such as porosity, diffusivity, and tor-
tuosity factor, between the predicted and the DEM ground truth
microstructures (Figure 3). For demonstration, the present work
was focused on the study of a constant compression speed com-
ponent application (top to bottom – z-axis) over different CDs.

3. Results and Discussion

3.1. CNN Optimization

Hyperparameters control the learning process of a machine
learning model. It is, therefore, crucial to fine-tune them to
get the best CNN architecture. Nevertheless, tuning hyperpa-
rameters is one of the most tedious tasks in machine learn-
ing projects. Thus, we wrote an optimization algorithm, us-
ing Optuna[47] package, to tune the different hyperparameters,
namely activation function, dropout, number of convolution, and
full-connected layers to obtain the best performance for our DL
model. The optimization process using Optuna is comprised of
a set of trials, where a trial is a single execution of the objec-
tive function with a specific list of hyperparameters. The objec-
tive function is defined by the users to evaluate the performance
of the model based on the given hyperparameters in the search
space. The objective function will return the training or valida-
tion score depending on our requirements. Optuna, then, aims
to minimize or maximize the objective function. In particular,
the mean squared error is minimized in our study. Over 500 tri-
als have been implemented on the MatriCS HPC platform of our

Adv. Energy Mater. 2024, 2400376 2400376 (6 of 13) © 2024 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH
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Table 1. Summary of some of the different CNN architectures explored in the present work with their corresponding MSE for training and validation sets.

Models Convolutional layers Fully connected layers Dropout MSE – training MSE – validation

A 2 – LeakyReLU 2 – tanh 0.372 0.1681 0.1348

B 3 – mish 2 – LeakyReLU 0.364 0.1176 0.1312

C 3 – mish 2 – mish 0.200 0.0357 0.0257

D 3 – relu 2 – relu 0.200 0.0088 0.0085

Universite de Picardie Jules Verne. We divide the optimization
process into two stages. In the first stage, the number of convo-
lutional and deep layers is optimized. In the second stage, the
CNN architecture obtained in the first stage is tested with differ-
ent activation functions (Table 1). This two-stage approach is per-
formed to decrease the computational cost during the optimiza-
tion. All models run during 1000 epochs using Adam optimizers.
Model D shows the best score in terms of MSE compared to oth-
ers. Specifically, MSE on the training data set is ≈0.0088 while
MSE on the validation set is approximately 0.0085, indicating no
overfitting in the model. Model D architecture is the one used
in the current work and is shown in Figure 2. Further details
regarding the Model D architecture are also shown in Table S1
(Supporting Information).

Figure 4 shows the evolution of both loss functions, MSE and
MAE as a function of the epochs. In Model D, it is observed
that MSE and MAE decrease smoothly for both training and val-
idation data, demonstrating that the parameters of the models
converge to optimal values without overfitting. This is concluded
by the negligible difference between the training and validation
losses. Similarly, there is convergence in MAE values, which af-
ter 1000 epochs are 0.0689 and 0.0662, for training and validation
datasets, respectively. MSE values are listed in Table 1.

3.2. Model Evaluation By Data Metrics

The testing dataset consists of 11 TS taken from four different
initial microstructure configurations. Table 2 indicates how the
11 testing TS are distributed considering the 4 initial electrode
microstructures. For example, for microstructure I, DEM simu-
lations at 20%, 25%, 30%, 35%, 40%, and 50% CD are used in the
training dataset leaving the 45% CD for testing. For microstruc-
ture II, DEM simulations at 20%, 25%, 30%, 40%, 45%, and 50%

CD are used in the training dataset leaving the 35% CD for test-
ing. For microstructure III, DEM simulations at 20%, 30%, 35%,
40%, and 50% CD are used in the training dataset leaving the
25% and 45% CD for testing. Finally, for microstructure IV, no
DEM simulation is considered in the training data set, therefore,
all the CD simulations are used for testing.

To verify that the time-dependent DL calendering model can
capture the effects on the microstructure properties, we evalu-
ated the different DL-predicted TS versus their corresponding
DEM-produced microstructures. The microstructural compari-
son is performed in two ways: volume (given by number of voxel
units) evolution and R2 score over the whole time frame. For mi-
crostructure I, at 45% CD, it is observed that the calendering DL
model can capture the spring-back phenomena (partial elastic re-
covery of the electrode) which occurs when the calendering roll
(represented in the DEM model as a planar press) is released once
the desired CD is reached (Figure 5a). The R2 score indicates how
similar are the two microstructures, the DL-predicted one versus
the DEM-target one. For microstructure I, it is observed that the
R2 score is always above 90% at all time frames, indicating that
the DL-predicted microstructures over time are very similar to
their corresponding DEM-target ones (Figure 5b,c).

Table 2. Summary of testing data used to study our DL model performance.

Microstructure % CD of training data % CD of testing data

I 20 – 25 – 30 – 35 – 40 – 50 45

II 20 – 25 – 30 – 40 – 45 – 50 35

III 20 – 30 – 35 – 40 – 50 25 – 45

IV 20 – 25 – 30 – 35 – 40 – 45 – 50

Figure 4. Graph of loss, a) MSE and b) MAE, for training and validation datasets using model D during the network training. Blue and orange curves
refer to training and validation sets, respectively.

Adv. Energy Mater. 2024, 2400376 2400376 (7 of 13) © 2024 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH
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Figure 5. a) DEM target microstructures over time versus DL-predicted microstructures over time. b) Evolution of the volume of the four different phases
(AM, CBD, Pores & Void) in number of voxels (# voxels) units versus time of the testing data, Microstructure I at a 45% CD. c) R2 score comparing
DEM target versus DL predicted over time.

Similarly, we calculate the volume evolution and R2 score
over the whole-time lapse for microstructure II at 35% CD
(Figure 6a,b) and for microstructure III at 25% CD (Figure 6c,d)
and 45% CD (Figure 6e,f). As it is shown for the microstructure
I at 45% CD, on the volume evolution, it can be observed that
the DL model accurately predicts the spring-back phenomena oc-
curring at 25% and 35% CD, following the trend of the DEM
target evolution at the different CD. Additionally, the R2 score
along the different microstructures is on average ≈95% over the
whole-time lapse, indicating that the DL-predicted microstruc-
ture is remarkably similar to its corresponding DEM-targeted
one. Videos of the DEM versus DL microstructure evolution

during calendering are available in the supporting information
section.

3.3. Model Evaluation By Electrode Functional Metrics

We also quantify the contact surface (voxel2) between the three
phases: Pore – CBD, Pore – AM, and AM – CBD. In Table 3, we
compare the contact surface area obtained from our DL model
versus the DEM model. Additionally, we calculate the relative er-
ror of the three contact surfaces. Figure S1 (Supporting Informa-
tion) shows the different phases of evolution over time for Mi-

Adv. Energy Mater. 2024, 2400376 2400376 (8 of 13) © 2024 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH
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Figure 6. Evolution of the volume of the 4 different phases (AM, CBD, Pores & Void) in number of voxels (# voxels) units versus time of the testing
data, microstructure II at a) 35% CD and microstructure III at c) 25% and e) 45% CD. R2 score comparing DEM target versus DL predicted over time of
the testing data, microstructure II at b) 35% CD and microstructure III at d) 25% and f) 45% CD.

Table 3. Contact surface area between the three phases: Pore, CBD, and AM. Surface units are given in voxel.2

Microstructure I Microstructure II Microstructure III

45% CD 35% CD 25% CD 45% CD

DEM DL DEM DL DEM DL DEM DL

Pore – CBD 4869 5259 5154 6018 20 763 23 717 5110 5930

Pore – AM 13 306 13 813 26 078 22 671 53 830 46 848 17 886 15 678

AM – CBD 134 879 143 851 126 960 131 843 96 311 112 326 149 154 162 341

Pore – CBD (error %) 8.01 16.76 14.23 16.05

Pore – AM (error %) 3.81 13.06 12.97 12.34

AM – CBD (error %) 6.65 3.85 16.63 8.84

Adv. Energy Mater. 2024, 2400376 2400376 (9 of 13) © 2024 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH

 16146840, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aenm

.202400376 by C
ochrane N

etherlands, W
iley O

nline L
ibrary on [19/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advenergymat.de


www.advancedsciencenews.com www.advenergymat.de

Figure 7. Calculated porosity of DEM training data (blue triangles) versus DEM testing data (green circles) versus DL predicted data (red crosses) of
microstructure a) I, c) II, e) III, and g) IV. Diffusivity of DEM training data (blue triangles) versus DEM testing data (green circles) versus DL predicted
data (red crosses) of microstructure b) I, d) II, f) III, and h) IV.

Adv. Energy Mater. 2024, 2400376 2400376 (10 of 13) © 2024 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH
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crostructure III at 25% CD. It is observed that, on average, the
error % of the AM – CBD contact surface is the smallest between
the different phases, with a value of 8.99%. The average error %
of the other two contact surfaces are 13.76% and 10.54% for Pore
– CBD and Pore – AM respectively. From a purely data point of
view, an average contact surface area error % of around or below
10% indicates that our model is predicting in an accurate way the
geometrical arrangement between the phases. However, since
the contact surface area is only one of the properties affecting the
electrode electrochemical performance (e.g., controlling for in-
stance the intercalation/de-intercalation kinetics of lithium ions,
and the electronic charge transfer between AM and CBD),[24]

we need to go beyond by also using other electrode functional
metrics.

Even though an explicit structure-property linkage is not in-
cluded in the DL model, the calculation of additional electrode
functional properties such as porosity, diffusivity, and tortuos-
ity factor, are crucial for characterizing and comprehending the
structural conformation of a microstructure. In this approach,
the listed properties are also used as metrics to compare the
similarity of the DL-predicted microstructures versus the DEM-
targeted ones. Numerical calculations of the three properties,
porosity, diffusivity, and tortuosity factor, are determined accord-
ing to the method described in the methodology section and re-
sults are shown in Figure 7.

For the four microstructures used for testing, I – II – III –
IV, the DL model achieves an accurate prediction for both poros-
ity and diffusivity. The relative error between the DL prediction
and DEM testing data oscillates in the order of 0.5% – 9.8% for
the four microstructures, indicating a reliable capacity of the DL
model to predict unknown electrode functional properties. Thus,
it can be concluded that the proposed DL model is also able to
accurately predict the porosity and diffusivity of a calendered
microstructure. In all four microstructure cases, porosity de-
creases as the CD goes up to 40%. Beyond 40% CD, the trend
is not uniform, porosity fluctuates with an amplitude of ± 2%.
Therefore, we consider that between 40 to 50% CD, the elec-
trode has reached its mechanical limit to be compressed, and
due to its spring-back phenomenon and initial electrode con-
figuration, porosity does not follow a uniform trend. A porosity
limit of ≈20% agrees with experimental reports which mention
the challenge of going under it due to the fracture of secondary
NMC particles.[15,48–49] Regarding the diffusivity, it decreases as
the CD increases on both DEM and DL models. It is observed
that the major drop in diffusivity occurs between 20 to 30% CD.
Beyond 30% CD, changes in diffusivity are not that abrupt since
the electrode is reaching its mechanical limit to be compressed.
Therefore, structural changes and arrangements are not as radi-
cal as during 20 to 30% CD. Tortuosity factor values are reported
in Table S2 (Supporting Information), together with the poros-
ity and diffusivity values shown in Figure 7. It is observed that
the tortuosity factor increases as CD increases, decreasing its ef-
ficiency to transport Li+ as observed on the diffusivity values. The
DL model predicted tortuosity factor values have an error of ± 5%
with respect to the DEM model ones. In addition, both models
present maximum porosity and lowest tortuosity factor for the
uncalendered electrode. The observed general trend is, during
calendering and as the CD increases, the porosity and tortuosity
factors decrease and rise respectively. Considering potential un-

derestimation in experiments due to the difficulty in determining
the CBD distribution and variability according to the tortuosity
factor calculation method, results in Figure S2 (Supporting In-
formation) should be seen as such, particularly for high CD.[36]

While an eventual overestimation of tortuosity factor values can
be attributed to the assumptions behind the Fickean diffusion-
like method used for the calculation of the tortuosity factor from
the 3D microstructure, this work aims to reproduce results from
DEM with faster ML techniques. In this sense, the comparison
shows remarkable agreement between the two microstructure
generation techniques.

While this can be attributed to the assumptions of the DEM
model, this work aims to reproduce results from DEM. Further-
more, the voxelization step makes our approach general enough
to be trained on any microstructure simulations (or even exper-
imental) results, ensuring its applicability as the state-of-the-art
advances.

4. Conclusions and Perspectives

The innovative DL model presented in this work can predict an
electrode microstructure evolution over time at a given compres-
sion degree during calendering and provide the associated final
relaxed electrode microstructure. Here we used the formulation
of 96% AM and 4% CBD as a proof of concept. The predictive
performance of our DL model is evaluated by two types of met-
rics: one purely based on data, MSE, R2 score, and contact surface
between phases, and the second one based on functional proper-
ties such as porosity, diffusivity, and tortuosity. Using those two
types of metrics together we observe that the DL model is able
to predict the electrode microstructure evolution over time with
remarkable accuracy. Furthermore, the DL model is able to repli-
cate very accurately the spring-back phenomenon, occurring at
different CDs. Regarding the computational cost, the DL model
performs a timestep in 15 seconds (wall time). On the other hand,
the DEM model performs an equivalent timestep in ∼ 47 minutes
(wall time). Therefore, the DL model has tremendously decreased
the computational cost of the simulation while keeping a high ac-
curacy as demonstrated by the metrics result.

The number of timeframes extracted from the simulations and
employed for training is a hyperparameter to be further investi-
gated to evaluate its impact on the accuracy of the predictions.
Grid resolution can also be considered as another hyperparame-
ter that will affect the model performance. In the current work,
we use a 76 × 76 × 125 voxel3 resolution, resulting in a voxel
size of 0.4 micrometer, which is almost four times smaller than
the smallest particle in the DEM simulations. However, further
exploration might be insightful as larger voxel sizes could pro-
vide faster results, but the accuracy of the model can be compro-
mised. Finally, even though the DL model presented in the cur-
rent work is trained for a specific formulation, transfer learning
can be used to train a new DL model with predictive capabilities
for other formulations, or even different electrode materials such
as graphite, LFP, or blends. In that sense, more training datasets
need to be generated and validated prior to the development of
the DL model, and this is ongoing work in our group. Further-
more, the nature of the data set, which is a voxelized geometry,
makes our approach general. Particularly, it would be interesting
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to adapt it to time series datasets obtained from 4D-computer to-
mography. For this reason, we are working on a model demon-
stration of the applicability of our method to tomography images
with time series.

We believe that the speed and accuracy of the presented
physics-informed DL model pave the way toward optimization
loops of the electrode microstructure, by accounting explicitly
for the 3D microstructural features (dealing with electrochemical
and transport heterogeneities upon the electrode operation) and
not only for the average properties of such electrodes as in our
previous works.[50–51] Given the high accuracy of the DL model
to predict calendered electrode microstructures with correct tor-
tuosity factor and porosity values, and since those two properties
have a high impact on the effective transport properties of Li+ in
the electrolyte, we can conclude that the model is also able to pre-
dict correctly the effect of the calendering on the transport prop-
erties. Regarding model limitations, we can observe that the error
(target versus prediction) regarding the contact surface between
phases varies around 10 to 15%, but when the overall electrode
functional metrics are calculated, the error is less than 5%. There-
fore, even though the overall electrode property presents high ac-
curacy, the interfaces between phases can still be improved. This
can be done by decreasing the voxel size: however, this will in-
crease the computational cost during training. Additionally, we
believe that using an input compression degree out of the range
between 20 to 50 % CD might produce unphysical behaviors,
therefore the model might not be suitable for extrapolation. Ex-
ploring extrapolation features will be part of our future work.

As shown in this work, our model can understand and predict
the dynamics of the calendering process. Moreover, we consider
that our model has tremendous potential to grow in several as-
pects such as accuracy and predictability. Therefore, our incom-
ing efforts will be focused on continuing the development of the
model and testing it for other formulations and in other manu-
facturing stages.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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