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H I G H L I G H T S

• Lithium-ion batteries require lifecycle management due to their extensive use.
• Battery recycling reduces waste and recovers valuable materials.
• Digitalization can transform recycling processes by increasing their efficiency.
• Digitalization helps integrating recyclability into the manufacturing processes.

A R T I C L E  I N F O

Keywords:
Lithium-ion cells
Battery
Recycling
Digitalization
Circular economy

A B S T R A C T

The lithium-ion batteries (LIBs) industry has expanded quickly despite technological constraints. Additionally, 
raw materials supply, end-of-life (EoL) management, and the creation of LIB manufacturing policies are receiving 
attention. All these concerns could be addressed simultaneously by integrating recycling of EoL cells from the 
early stages of the LIB manufacturing. This article presents perspectives on how to achieve this holistic inte
gration through the means of digitalization. Various challenges of LIB recycling, and different digitalization tools 
are discussed, shedding light on the latter’s potential applications and outcomes. Through the use of the dis
cussed tools to create advanced Digital Twins, it would be possible to screen different recycling processing 
conditions and materials to achieve higher efficiency, increased safety, at a lower cost. In this regard digitali
zation of the recycling process for LIB cells, emerges as the key for achieving a collaborative, sustainable, and 
efficient battery value chain in the European Union. Lastly, in the view of the growing LIB market, this article is 
thought to be of interest for recycling stakeholders as they move towards a more circular economy model.
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1. Introduction

1.1. Context

To comply with the sustainability goals of reducing carbon emis
sions, the European Union has proposed the “Fit for 55” proposal, which 
acts as one of the factors that is steering the automotive industry towards 
electrification. This proposal establishes that by 2035, all cars and vans 
registered in Europe will be mandated to be zero-emission [1]. As a 
reaction of this proposal, a competitive race has started to create the 
batteries that will power the engines of the next generation of electric 
vehicles (EVs). The players of this race range from emerging battery 
manufacturers, well-established vehicle manufacturers, as well as part
nerships between both of them.

Within this context of increased demand for lithium-ion batteries 
(LIBs), we find the birth of the gigafactory, a term used to describe a 
factory that focuses on the massive production of rechargeable batteries. 
It gets its characteristic name from the multiple lines required for cell 
assembly and finishing that are coupled together to produce an annual 
output of several GWh of battery cell capacity [2].

The increase in the market’s demand for batteries will naturally 
result in an increased number of gigafactories, and with this augmen
tation, the consideration of a proper waste management system arises. 
Given that these factories produce their goods out of expensive and 
critical raw materials, both end-of-life (EoL) cells, as well as production 
scrap need to be considered.

A solution to this escalating waste problem is to conceive the totality 
of a battery’s life-cycle from its product design, putting particular 
emphasis on integrating recyclability into the development chain. In this 
specific context, we highlight the use of digitalization as a tool to ease 
the integration of recyclability aspects into the manufacturing process of 
LIB cells.

1.2. How to navigate this article

The goal of this article is to offer perspectives on how the LIB recy
cling process can be eased by repurposing state-of-the-art battery digi
talization tools, currently applied to different steps in the battery 
manufacturing chain. Since large scale recycling processes are still being 
developed and scaled up, and computational modeling of these pro
cesses is basically on its infancy, this article offers perspectives for 
redirecting the computational modeling efforts towards the creation of 
an autonomous, smart and circular battery value chain. In order to do so, 
the article is divided into different subsections covering the spectrum of 
topics presented in Fig. 1.

After a brief introduction to the problem at hand, tackled in this 
Section 1, the state-of-the-art on recycling techniques, the challenges 
that this sector faces for its scalability and automation, are discussed in 
Section 2, in addition to the ways in which digitalization of the recycling 
process can help to complement circular economy goals.

In Section 3, current optimization approaches at different stages of 
the LIB cell production are presented by describing the computational 
modeling efforts and techniques. In this same section, some perspectives 
on how these techniques could be reoriented as tools for the digitali
zation of the LIB cell recycling process are also discussed.

Finally, Section 4 outlines the current status of LIB recycling in the 
European Union by making a critical analysis of the current standardi
zation initiatives and reviewing some of the current public funded 
projects adjacent to the topic of LIB cell recycling.

2. Battery recycling

2.1. Circular economy approach for battery cell recycling

Recycling battery cells is a topic that has gained popularity in the 
past decade, given that the notion of sustainability was introduced to 

energy storage devices, with a specific focus on LIBs in the 2010s by 
Larcher & Tarascon [3]. This visionary review suggested greener battery 
chemistries as well as insisted on the need for novel recycling methods.

In recent times, sustainability efforts have been developed outside of 
academia and have been one of the main driving forces behind 
governmental actions for developing the European Battery Industry. 
One example is the “Strategic Action Plan on Batteries”, an effort by the 
European Commission for ensuring a sustainable and competitive bat
tery value chain. In the report for this action plan, the circular economy 
approach for the value chain is highlighted and deemed achievable by 
fostering the re-use and recycling of cells [4].

Embracing a circular approach by targeting the utilization of EoL 
batteries is expected to contribute to a reduced strategic dependency on 
primary raw materials and resources that, with very few exceptions, 
come from geographic regions outside Europe. This dependence of 
Europe on raw material reserves outside its geographical boundary often 
leads to conflicts with European goals in protecting basic human rights, 
environmental protection and other ethical dilemmas [5]. Moreover, 
with some of those materials coming from politically unstable regions, 
the ingredients for fabricating the current and future batteries (gener
ations 4 and 5), have highly fluctuating prices.

Alongside this, one of the EU’s directive proposals will require to 
recover 95 % of cobalt, copper, and nickel, and 70 % of lithium from 
spent LIBs (for traction applications) by the year 2030 [6]. In this way, 
the Circular Economy, as well as the Life Cycle Assessment (LCA) con
cepts have gained more and more prominence in the context of LIBs 
value chain [7,8] to support efficient utilization starting from cradle to 
grave.

In the past, LCA has been considered as a tool to analyze the supply 
chain, forecast environmental impacts, and support sustainability de
cisions, however, Cilleruelo Palomero et al. [7] have highlighted the 
importance of considering circularity calculations alongside LCA, for 
having a complete perspective of supply chains.

Applying this concept to the battery industry, what is currently 
needed by manufacturers, is a way to actively incorporate the concept of 
recycling from the early stages of conceiving the scale-up from pilot line 
to large-scale production.

Fig. 1. Visual summary of the main topics discussed in this article.
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2.2. Battery recycling techniques

From a Circular Economy perspective, recycling aims to obtain ma
terials suitable for the manufacturing of a new battery cell from a spent 
one, bringing economic, environmental, health and humanitarian ben
efits to the battery business through the use of recycling techniques.

EoL batteries represent a corrosive, explosive and overall hazardous 
waste according to the U.S. legislation, as they contain toxic chemicals 
and a remaining electric charge, which remains as one of the corner
stones for battery recycling companies [9]. Aside safety issues, there is a 
problem concerning the existence of many different form factors, and a 
wide variety of chemistries, common ones for electrodes including 
Nickel-Manganese-Cobalt (NMC), Lithium Iron Phosphate (LFP), 
Nickel-Cobalt-Aluminium (NCA). Having said this, the composition of 
the EoL battery cells is one of the most important factors to consider, 
given its influence on the technical, economic, and environmental 
feasibility of the different recycling processes.

Currently, battery recycling focuses on the recovery of the most 
valuable metals such as nickel, cobalt, copper and manganese, making 
NMC electrodes attractive for recycling. Nevertheless, this approach is 
slowly changing, depending on the targeted electrode composition to be 
recycled. A fully circular business model, in addition to recovering 
active materials, should also address the treatment and recovery of the 
less valuable components of spent batteries (such as binders, conductive 
additives, electrolyte salts and solvents, separators) [10]. Moreover, 
several EVs manufacturers have announced their plans for the use of LFP 
electrodes in their future batteries; thus, strategies for the recycling of 
LFP (which are currently not economically as attractive as NMC) will be 
needed [11].

To achieve high recovery yields of all the components of a battery 
cell, and fully embrace the zero-waste concept, it is essential to integrate 
novel recycling steps that consider the non-active materials, in addition 
to ensuring a proper liberation of the enclosed active materials [12]. The 
development of disruptive pretreatments and recycling processes will 
help to provide a significant increase in the number of elements that can 
effectively be recovered from EoL batteries (see Table 1) without 
affecting the recovery yields of the active materials.

As for the battery cell recycling processes applied directly to the 
active materials, several technologies (Fig. 2) have been developed to 
tackle the different challenges in recycling: 

(i) Pyrometallurgical method:

Pyrometallurgy is a combination of different processes and tech
nologies for metals recovery through the use of high temperature 
chemical reactions (calcining, roasting, smelting and refining). After 
dismantling EoL battery packs, the recovered cells and/or modules are 
heat treated, which avoid the need of sorting or other pre-treatments. In 
this way, the batteries are rapidly thermally deactivated, the organic 
compounds (e.g. plastics, solvents, graphite or binders) are removed, 
and the most valuable metals (cobalt, nickel, manganese and copper) are 
recovered in the form of alloys by a process of reductive smelting. One of 
the major drawbacks of this route relies in the difficulty to recover Li 
from the slag at a viable cost together with high energy consumption and 
expensive gas treatments to avoid toxic emissions [13]. In some cases, 
this technique is used for the obtention of black mass product, obtained 
at lower working temperatures (400–800 ◦C). Depending on the tem
perature, the final powder product may consist of a mixture of the active 
materials, conductive carbons, metal impurities coming from the current 
collector materials, and even binder and some electrolyte components 
[14]. 

(ii) Hydrometallurgical method:

Hydrometallurgical processes are focused on dissolving valuable 
metals in order to separate, purify and finally obtain precursors of new 
active materials. The active materials are concentrated in the form of 
black mass through discharging, crushing and fractionatiing spent bat
teries, followed by lixiviation (mainly inorganic or organic acids) and 
purification steps (selective precipitation ion-exchange and/or solvent 
extraction, etc.), which enables high purity of the products. However, 
this approach requires sorting and mechanical pre-treatments which can 
be dangerous. In general, this route is more complex than pyrometal
lurgical one and overall costs are higher [15]. 

(iii) Direct recycling method:

Direct recycling includes novel methodologies developed to recover, 
regenerate, and reuse the active materials of the electrodes while 
keeping their chemical structure intact. After processing, these recov
ered and regenerated materials are intended to be returned to the bat
tery supply chain without additional, or in some cases, limited 
processing [16]. The high cost-effectiveness and low environmental 
impact of this disruptive recycling route are evident, but these benefits 
are currently outweighed by the challenges of solving the technical 
difficulties and large-scale implementation.

The current status of industrial and research process for recycling 
EoL batteries can be mainly classified in two process routes: a combi
nation of pyrometallurgy and hydrometallurgy, or a mechanical treat
ment followed by hydrometallurgical process [17]. Both recycling 
alternatives have been developed with the aim of increasing the recov
ery yield of the most valuable metals, leaving aside the treatment and 
valorization of low-density plastics, metal scraps, graphite, electrolytes 
(salts and organic solvents), binders and separators, among others. In 
this way, the recycling rate of the batteries is really low with a huge 
reduction in circularity and sustainability because complex materials, 
including halogenic and organic compounds, as well as some strategic 
battery materials are lost.

2.3. Challenges in recycling

In addition to the recycling procedure itself, certain recycling routes 
call for careful sorting preprocessessing like sorting and pretreatments, 

Table 1 
Some of the current materials used in commercial LIB cells.

Battery Component Battery 
Element

Material used

Positive Electrode Current 
collector

Aluminum foil

Binder Polyvinylidene fluoride (PVDF)
Additives Conductive carbon/s
Active 
Material

LCO (LiCoO2)
NMC (LiNixMnyCo1-x-yO2)
NCA (LiNi0,8Co0,15Al0,05O2)
LMO (LiMn2O4)
LFP (LiFePO4)

Negative Electrode Current 
collector

Copper foil

Binder Styrene-Butadiene Rubber (SBR) +
Carboxymethyl cellulose (CMC)

Additives Conductive carbon/s
Active 
Material

Graphite
Graphite/Si
Graphite/SiO2

LTO (Li4Ti5O12)
Electrolyte Solvent Mixture of cyclic and linear carbonates

Salts Lithium hexafluorophosphate (LiPF6)
Lithium Bis(trifluoromethanesulfonyl) 
imide (LiTFSI) and its derivatives

Separator Membrane Polyolefin-based (PO) polymers
Coated 
membrane

PO + PVDF
PO + Ceramic

Casing (depending on 
the format and 
geometry)

Pouch Aluminium + Polymers
Cylindrical/ 
Prismatic

Steel
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which are difficult to fully automatize due to the different commercially 
available cell/pack designs available, as well as a lack of information 
supplied by the battery manufacturers. Insights have been provided on 
the type of data to which recyclers and second life experts would like to 
have access to perform their activities [18]. Battery chemistry, disas
sembly options and instructions as well as product design information is 
some of the desired information by recyclers. On the other hand, the 
reasons for battery manufacturers not disclosing this information are 
mainly competitive concerns, confidentiality contracts, and legal pres
sure. In this regard, a holistic approach has been proposed by Kintscher 
et al. [19] for an information exchange architecture among the different 
relevant partners which play a role in the supply chain of EV batteries. 
An information marketplace in which information or datasets relevant 
for the recycling process can be sold or bought is developed.

All in all, the technical, economic and environmental feasibility of 
battery recycling processes need to ensure the treatment of EoL batteries 
of different chemical compositions, geometries and designs, efficiently 
recovering as many elements as are contained into the cell in order to 
reintroduce them into a new one. Herein, it is considered that an 
effective integration of digitalization of recycling processes emerges as a 
key factor for achieving this, in addition to building a collaborative, 
sustainable, efficient and complete battery value chain in the European 
Union.

Nonetheless, each of the recycling methods mentioned above has its 
own limitations, and the ever-growing demand of batteries will only 
intensify these limitations, making them more pronounced in relation to 
the available information. This information includes origin of the cell, 
aging condition, nature and composition of anode and cathode electrode 
materials as well as the state of the cell at the EoL [20]. Additionally, the 
segregation or sorting process is a key challenge. The main obstacle at 
hand is to facilitate the correct implementation of the recycling process. 
However, providing key cell information (such as the cathode chemistry 
and its residual capacity at EoL) can lead to a more efficient and tailored 
recycling route based on the available data.

Similarly, different batteries involve different material compositions, 
that require the extraction of specific elements. These factors lead to 
difficulties in recycling and require a number of experimental steps to 
get the right composition [21]. The most discussed example is the 
recycling of black mass, which is a mixture of the active material pow
ders of both electrodes, which is very complicated to either separate or 
regenerate directly. This challenge is intensified in the case where the 
transition metals are sensitive to reduction by carbon if a heating stage is 
required [22].

Other of the areas of the process that affects the recyclers in a sig
nificant way is the safety, often combined with proper handling and 
disposal of the EoL battery cells. As the disposed battery cells may still 
contain stored energy and lead to accidents if improperly handled.

In a nutshell, it can be said that prior and proper information on all 

the areas mentioned above, may help recyclers in designing better ex
periments, reduce accidents, and recycle more efficiently. In this 
context, integrating a digital pipeline into the recycling sector can help 
industry partners to combine both empirical and digital tools to move 
towards the Green Chemistry context in the field of battery recycling 
[21,23].

2.4. How digitalization of recycling can complement circular economy 
goals

When we consider the battery value chain from the extraction of raw 
materials to the final disposal of EoL batteries, managing its complexity 
would need an integrated and interdisciplinary approach [24]. Inte
gration of digitalization technologies in the domain of recycling is thus 
envisioned to enhance processes efficiency, battery product quality, and 
sustainability. Such an approach will need to encompass automation 
through the use of sensors, analytics, and data-driven tools to optimize 
steps like waste sorting, material recovery, and resource utilization. 
Although conventional approaches are always an option, digitalizing 
analytics of different areas in the value chain would complement the 
recycling process and accelerate development.

For example, combining Machine Learning (ML) algorithms with the 
LCA analysis of a LIB cell’s life-cycle, will be useful for data-driven de
cision-making in the choice of cell designs. By assessing environmental 
impact especially, one can optimize the material choice, energy con
sumption, and emissions. LCA insights and eco-design digital tools can 
help manufacturers with information to create more sustainable battery 
cells, thus utilizing efficient resources and minimizing waste [24,25].

A second example of how leveraging the digital approach, using 
data-driven decision-making tools might transform the optimization, is 
to use a twin of the manufacturing process to give insights into each step 
of it. In this context, these twins are being used in battery cell 
manufacturing for minimizing defects and scrap rates [26]. For instance, 
studying and improving the most crucial steps of manufacturing through 
computational simulations, would aim to increase efficiency and mini
mize waste. Additionally, in the era of Artificial Intelligence (AI), it is 
envisioned that an intelligent quality check during manufacturing is 
exported to the recycling process and ensure minimum waste and 
improved material recovery process.

Similarly, digitalizing the process and its corresponding data speci
fications can help manufacturers and recyclers to benefit from trans
parency, ensuring a proper recycling and recovery during the battery 
cell’s lifecycle. Supported by incentives, digital campaigns to educate 
product users about LIB cell recycling, can also help manufacturers for 
an eased collection through urban mining, recovering the most valuable 
materials. To achieve this, accurate information regarding the specific 
impact of battery materials or processing, can assist in developing reg
ulations and standardizations.

Fig. 2. The different recycling routes for battery-derived waste.
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Furthermore, data from digital tools could help to make well- 
informed decisions on environmental effect mitigation by considering 
the technical, economic, and design perspectives across the battery cell 
value chain. Additionally, digitalization can offer a holistic ecosystem 
for sustainable repurposing, reusing, and recycling of battery cells. As an 
example, a centralized information database which includes incentiv
ization mechanisms for collection of both data and battery products 
(Fig. 3), can facilitate stakeholder collaboration and overall help the 
transition of the battery chain from linear to circular.

All the points previously mentioned get their importance when we 
consider that observations indicate that from EV scrap, LIBs alone could 
contribute to a total annual waste generation of 4 million tons by the 
year 2040 [27,28]. Most importantly, with ongoing research for new 
energy storage technologies including next generation LIBs, all 
solid-state batteries (ASSBs) and post LIBs, challenges related to raw 
material depletion, high scrap rates, and associated environmental im
pacts will escalate. Therefore, it will remain important to leverage both 
the advancement and advantages of digitalization in this field.

In conclusion for this section, along with improvements in recycling 
methods and technologies, the need for sustainable practices through 
collaboration is greater than ever in the current world. As we move 
closer to the principles of Circular Economy, digitalizing battery recy
cling process and associated data might impact the ways in which the 
LIB industry develops, in order to promote a more sustainable use of our 
resources while still providing an effective technology [27,29].

3. Digitalization techniques: from cell production to recycling

Simulation techniques along the battery value chain have found their 
use in many applications; from simulating the dynamics of active ma
terial particles upon slurry drying at the lowest of levels, to analyzing the 
thermal behavior of a battery pack, at one of the highest levels (Fig. 4). 
However, despite the apparent diversity, all these modeling efforts find 
their commonality by aiming in the same direction: reducing iterative 
experiments, saving both time and resources, and finally, accelerating 
the development, design and optimization of the battery cells as 
products.

In the fast-evolving field of batteries, it is not rare for the techniques 
applied in one specific use case to find new relevance in another one. In 
this context, the following Section discusses how modeling techniques 
applied to battery design, research, and optimization can be repurposed 
to shed light on the LIB recycling process and its digitalization.

For a comprehensive analysis, we discuss the modeling techniques 
spanning from the process level all the way down to the physicochemical 
level. Following a brief overview of these techniques current employ
ment in the battery manufacturing field, each technique’s transferability 
for application in recycling is discussed.

3.1. Digital twins and virtual twin experiences for efficient recycling

In an era where the productive processes are starting to switch to 
methodologies like Smart Manufacturing, Digital Twins (DTs) are a 
concept that has gained popularity in the recent years [30]. This 
growing interest is understandable, as it is a technology that aims to 
connect modeling technologies (in a virtual space) to product
s/processes located in the physical space [31].

DTs have been previously described as a digital representation of a 
real-world entity or system, in the form of a software object or a model 
that mirrors a physical object, process or organization. Going deeper on 
this idea, Virtual Twins (VT) have surged as something further from a 
mathematical representation of an object or a system. VTs consider an 
entire system of systems, including the environment in which the 
physical object exists. This VT technology makes it possible to visualize, 
model, and simulate virtual worlds, along with the consequences that 
each modification of an individual component has within the entire 
model.

These twins have been proposed as a key tool to plan, construct and 
operate gigafactories [32]. Recently, several reports in the press have 
stated that battery manufacturers are starting to partner with companies 
that offer modeling and simulation solutions to create digital twins for 
their processes [33–38]. Currently, the terminology is evolving fast, and 
we have taken several steps forward from DTs to virtual twin experi
ences (VTEs). These technologies have been previously targeted towards 
the cell design, optimization and manufacturing process. However, it is 
intended to extend these concepts to the recycling process to allow an 
integrated end-to-end digitalization from battery cell design and pro
duction to second life, end of life, and finally recycling.

Taking the example of battery makers, they can start to use VT 
technology to design their batteries in a system of systems, with VTs 
representing the chemistry level of the cell, to the 3D engineering level 
of the cell, pack, module, and device. Once each of those VTs are done, 
they can be subjected to simulation protocols to check, for example, how 
resistant the design is to external elements. VTs will respond to the 
virtual testing and reveal how the battery cell or pack would perform 
under cold weather conditions as an example. This will enable engineers 
to determine if they need to change the chemical formulation within the 
cell or the padding used around the cell, etc. Once the design is ready to 
move into the manufacturing process, they can use a VT to investigate 
how to improve the gigafactory layout to mitigate scrap and lower en
ergy consumption; or how different suppliers impact the overall carbon 
emissions levels of the end product and how the supply chain will be 
impacted by their choices.

Another major differentiator of a VT is that it establishes a contin
uous feedback loop, with data coming in from the product or process in 
its real-world usage. Teams can analyze this data, run additional tests 
and make changes to create constant improvement, always aiming to 
prevent unexpected downtime.

In summary, a DT can be understood as an image of the working 
process. However, a VT ties together all aspects of the system, the pro
cesses, and the responses and is made available in a single platform. 
Instead of just a digital representation, it is possible to track and respond 
to all of the requirements in one space. Thus, VTs, subjected to virtual 
testing, allow a complete and powerful VT experience. This convergence 
of the virtual and real worlds and the continuous cycle of information 
between the two creates a closed-loop capability that enables optimi
zation of products and processes through these VTEs.

However, creating these technological breakthroughs is only part of 
the entire solution, as there are plenty of areas of opportunity in 

Fig. 3. A proposed user acceptance model, based on a centralized database 
and incentives.
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different industry sectors to integrate them [30]. As a way of forecasting 
the trends, this paper aims to present perspectives that hopefully give 
some ideas on how to apply the approach of VTEs to one of the crucial 
steps of the battery life-cycle, recycling. This approach is believed to 
accelerate the process of closing the loop to foster a circular battery 
economy.

More than 40 million electric cars are expected to be sold in 2030 by 
the largest automakers [39]. With this growing demand along with 
shortage of virgin cell materials, battery manufacturers must consider 
recycling and recovering chemicals to build batteries. This requires safe 
and efficient processes, starting from the battery disassembly, or the 
collection of scrap materials during cell production, to the extraction of 
the materials. A “model-first” approach through VTEs helps industry to 
achieve the crucial step of proactive “design-for-circularity” batteries for 
cost-effective and efficient disassembly and collection processes for 
recycling and recovery.

During cell production, the amount of scrap materials generated can 
be significant. VT experiences can help mitigate the amount of scrap 
materials, as well as to control and optimize production. Digital conti
nuity between cell design and manufacturing process engineering will 
bring visibility on the performance of the manufacturing process. Virtual 
models of each step of the manufacturing process can provide insights on 
the efficiency of each step [26]. This allows virtually designing and 
virtually testing improvements for each step towards an optimized so
lution that will potentially reduce the amount of scrap materials. VTEs 
can also be applied at the line level, with solutions like factory flow 
simulations, to optimize the flow of materials across all the process 
steps. Such solution helps not only to identify production bottlenecks 
but also define mitigation paths for scrap materials, using methods like 
direct recycling, or optimizing the route for scrap material flows. 
Manufacturing Operations Management systems can execute such plans 
for materials traceability, quality controls or warehouse management. 
The integration of such a comprehensive tool chain is possible, bringing 
digital continuity from product and process engineering to 
manufacturing operations, so cell makers can improve material reuse 
and recyclability.

Using modeling and simulations as well as generative AI and ML 
techniques for materials design and process optimization, informed 
decisions can be made on the second life performance of the recycled 
chemicals. VTEs for the choice of the mechanical and chemical tech
nologies for recycling, converting precious metals in the battery to high- 
purity raw materials, enabling the production of new batteries from 
recycled materials, and ensuring that the second life battery performs as 
good as the batteries made from virgin materials are all necessary for 
successful circularity. By performing “what/if” virtual experiments, 
several scenarios can be virtually investigated prior to deploying them in 
the physical lab.

By designing specific VTEs, battery circularity can be planned, 
optimized and automated before batteries reach the end of its first life. 
Fig. 5 represents the digital thread connecting materials resilience, 
materials traceability and second life eligibility. By simulating supply 
chain fluctuations, price hikes as well as market demands, raw material 
resilience can be built. With VTEs covering battery materials chemistry, 
formulation and design, the most appropriate raw materials and process 
can be chosen, which are cost efficient while maximizing performance 
and lowering environmental footprint. VTEs where modeling and sim
ulations are combined with generative AI and ML allow to screen the 
phase space of second life materials and predict cell performance 
allowing to assess the potential battery health, safety and lifetime.

The VTEs allow to visualize, model, and simulate the entire envi
ronment of a sophisticated experience, facilitating sustainable business 
innovation across a full product’s life-cycle. VTs cover a range of length 
scales, starting from cell chemistry at the nanometer scale to the 
micrometer scale, and cell and pack engineering covers millimeter to 
meter scales. To cite some examples, a few recent publications that used 
different software like BIOVIA Materials Studio [40] at the cell chem
istry scale, are highlighted [41–43].

Fig. 4. Modeling techniques for battery manufacturing optimization span multiple scales, reflecting the different scales of battery components in the physical world. 
These techniques range from discrete to continuum in the corresponding virtual models.

Fig. 5. Virtual Twin Experiences loop for recycling and recovery.
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3.2. Multilevel modeling

Battery cell production consists of heterogeneous processes coupled 
by converging and diverging material flows, resulting in the propagation 
of cause-effect relationships along the process chain and affecting 
product, process, and production performances. Consequently, alter
ations in one process located at the beginning of production may lead to 
changes along the chain [26,44,45].

This applies similarly to battery cell recycling. The majority of LIB 
battery recycling processes are characterized by a combination of 
different disassembly processes, followed by mechanical, thermal, and 
hydrometallurgical processes. The resulting material flows within the 
process chain are complex, particularly as varying cell chemistries are 
fed into the process chain, leading to volatile process outputs in terms of 
quality and achieved material fractions. In order to make techno- 
economic decisions in this context, it is necessary to employ 
digitalization-empowered methods and tools that take the complexity of 
the material flows into consideration. The handling of this complexity 
necessitates a high degree of transparency of the process chain and data 
infrastructure for the seamless integration of data from various stages of 
the recycling process in order to create a comprehensive overview that 
supports informed decision-making.

Modeling approaches can enable the reproduction of complex cause- 
effect relationships in the chain as well as the investigation and quan
tification, for example, of the interconnections between manufacturing 
process parameters (e.g., temperature and speed) and structural pa
rameters (e.g., mass loading and porosity) at a process level.

Independent process models can be coupled to investigate the 
process-structure relationships along the process chain. A further 
coupling of these models with electrochemical or production models 
enable the investigation of interdependencies on the battery cell prop
erties [26,46,47,84] or production performance (e.g., machine utiliza
tion, energy and material consumption) [48]. With that, cause-effect 
relationships on a product, process, and production levels are quantified 
by coupling at a multilevel approach. For the specific problem at hand, 
we propose a framework like the one shown in Fig. 6.

Since physics-based (i.e., mechanistic) modeling provides the 
reproduction of known phenomena, existing and validated models may 
be extrapolated to other scenarios, such as new chemistries or process 
configurations. In addition, this approach allows the consideration of 
interdependencies in planning activities, which in turn facilitates the 
selection of better parameters, the improvement of battery cell quality, 
and the avoidance of material and energy losses associated with the 
production of battery cells of poor quality.

Over the past years, the investigation of battery cell recycling has 
become increasingly important as a response to the growing efforts to 
increase circularity and comply with the new regulations. Battery cells 
can be recycled in different routes, with varying yields and resulting 
quality. Understanding the process-structure relationships in recycling is 
mandatory for improving the efficiency of recycling processes and 
increasing the quality of recycled materials. The majority of current 
investigations regarding the recycling process are focused on experi
mental work [49–51]. Other studies investigate the effect of process 
configurations and yield by modeling the material flow with published 
data [52] or the effects of recycled materials in battery cell production 
with economic and environmental focus [53–55]. Work based on 
experimental data is currently limited by low recycling rates of batteries 
after the use phase and low maturity level of recycling technologies. The 
multilevel physics-based modeling approach, developed for battery cell 
production, could be extended to recycling processes to support the 
investigation and comparison of different recycling routes in the yield 
and quality material. As there is currently limited experimental data on 
recycling processes, especially in larger scales, the advantages of 
mechanistic modeling could be transferred to recycling and thus used to 
consider new scenarios for which there is still a lack of information. 
Moreover, the linking of process chain models for battery cell recycling 
and production in a circular approach could support the investigation of 
usage of recycled material. This investigation has so far only been car
ried out as part of work focusing on the circular economy [56] and there 
is a lack of further analysis on the exact impact of recyclates on battery 
cell quality and process configurations. With this, the percentage of used 
recycled materials could be determined considering their quality and 
impact on the final battery cell properties and resource consumption.

3.3. Model-based control

The utilization of both descriptive and predictive data-based ap
proaches is key to understand interrelations within the process chains 
and controlling them effectively supporting ecological and economical 
goals. Descriptive methods enable a cross-process understanding to 
evaluate the most important factors within the process chain. These 
parameters can then be used as levers for the prediction of the final 
quality parameters of the cell. An application example is the early 
declaration of scrap based on the product feature prediction and general 
process knowledge gained through descriptive methods [57][81]. It can 
prevent the addition of further material onto an intermediate product 
that is not going to be able to provide a functioning product.

In general, the determination of more parameters for error preven
tion along the process chain is associated with higher costs. A compro
mise must therefore be found between the costs of prevention and the 
costs of errors that actually occur. Quality gates are a concept that sets 
inspection and decision points along the process chain to evaluate the 
quality of an (intermediate) product [58]. Quality itself can be defined 
as a “… degree to which a set of inherent characteristics or features of an 
object fulfills requirements” [59]. This set of characteristics can e.g. 
relate to a process or an (intermediate) product. A distinction must 
therefore be made between those two. It is however important to 
acknowledge the influence of the process parameters on the product 
features which is why both the process and product quality need to be 
considered. Especially for large-scale production inline inspections with 
automated evaluation are most suitable for potential decision making 
with regard to the control of downstream processes [58]. The right 
determination of the most important parameters and features however 
can be based on experience and historical data using feature selection 
methods like recursive feature elimination [60].

The interrelations found by e.g. data mining of the historical data at 
the quality gates can be utilized on different levels of control. On the one 
hand, single processes can be enhanced, on the other hand, these in
terrelations enable cross-process control that utilizes the knowledge 
regarding the process chain to control the downstream processes based 

Fig. 6. Proposed coupling of different models involved during production and 
recycling of LIB cells, considering product, process and process chain models.
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on the intermediate product features and process parameters. Currently, 
these approaches are mainly found in production but not recycling. The 
main focus is often the relationship between process parameters and 
intermediate product features as well as the prediction of features [57,
60–62]. This is the main basis for the mentioned quality gates building a 
foundation for decision support within the production. In contrast to 
production, recycling processes follow more variable routes since 
different chemical and physical techniques of material extraction are 
usually necessary [63]. The current focus is still on understanding the 
individual processes.

Model-based control systems considering both battery cell produc
tion and recycling as consequence of production are currently scarcely 
addressed in research. Making the link from recycling back to produc
tion can provide helpful insight of the interrelations between both 
process chains adding more complexity to the overall system but also 
including decisions that have to be made in when passing material be
tween the process chains [64]. An example would be exclusion of highly 
contaminated material that cannot be handled by an in-house recycling 
route. Scenarios like these can be very facility-dependent and individual 
but are necessary to be considered long-term due to the growing 
importance of a high secondary materials share driven by demand and 
politics. Additionally, the concept of circulation factories combines both 
process chains under one roof offering the advantage of independence 
from recyclers, while also providing rejected parts of known chemistry 
for recycling. The extension of control systems to include recycling is 
therefore favorable since the material passed on between the process 
chains highly influences the product quality, especially considering the 
imperfect or unknown process quality of the recycling processes. 
Enhancing transparency with data-based approaches therefore benefits 
the factory overall.

3.4. Integration of recycling into the production at the system level

Besides the aforementioned connection of process chains on a control 
level, circulation factories connect all flows of production and recycling 
including information, material, energy and personnel. All of them can 
benefit from working within a common factory under the right cir
cumstances while also reducing the travel distance.

The complexity of the most useful in-house recycling line is deter
mined by various factors like the individual company prerequisites and 
the scope they want to act in. On the one hand, company prerequisites 
include, for example, the scrap rate, return options for own or known 
batteries, existing relationships with recyclers and political conditions 
such as subsidies or recycling quotas in the respective country. On the 
other hand, the motivation to operate a recycling line in the first place or 
even take on a more advanced recycling line is determined by factors 
such as establishment and preservation of intellectual property within 
the company or ecological goals. It is also unknown which requirements 
companies will face in the future. To have working structures estab
lished at an earlier stage might save time and could be a competitive 
advantage.

Linking production and recycling through information flows within a 
circulation factory supports the aforementioned data-based methods 
helping to identify the most important influences on the process chains 
as well as the recycling effort. This supports not only the operation of the 
plant but also planning processes of the plant or the product design.

3.5. Data gathering and storage as basis for data-based and physics-based 
modeling

It is important to ensure that managing the data across intricate 
manufacturing steps presents significant challenges, chiefly in main
taining the data consistency and connectivity. A promising solution lies 
in creating a semantic layer over the whole manufacturing infrastruc
ture. This concept has been explored in research projects such as 
KIproBatt [65], ViPro [66], and DataBatt [67], guiding the path towards 

comprehensive machine-readable process data.
The cornerstone of these initiatives should be a process-centric data 

model, as suggested previously by the General Process Ontology (GPO) 
[68]. Complementing this is the peripheral, an inventory description 
that includes machine and material metadata using Battery Interface 
Ontology (BattINFO) [69] and various data sources and digital assets. 
This strategic approach can significantly impact integration time, AI 
application, and closed-loop process/value chain optimization, 
including recycling. Furthermore, it offers interoperable data for other 
domains, particularly sustainability research.

3.6. Overview of current digitalization of battery manufacturing

The state-of-the-art of modeling techniques applied to battery 
manufacturing mainly rely on the use of physics-based models (PBMs) 
and AI/ML. These models allow researchers to study complex phe
nomena occurring on a wide array of scales [70,71]. However, for the 
purpose at hand, this subsection will focus on the simulation of recycling 
at the micro- and macroscopic scales and will shed light on how 
computational tools can be used to optimize our ability to both effi
ciently and sustainably recycle battery materials.

As an example of the current battery manufacturing modeling ap
proaches, Fig. 7 shows an illustration of a simplified and experimentally 
validated PBM used for an electrode manufacturing pipeline. This model 
has been developed in the context of the ARTISTIC Digitalization 
Initiative, initially supported by a European Research Council project 
[72]. The steps within this modeling framework involve the simulation 
of the electrode slurry followed by a drying and consequent calendering 
process at different compression degrees. Each step of this simulation 
pipeline is carefully parametrized for different slurry and electrode 
properties (like density, porosity, and thickness). The final output are 
3D-resolved electrode microstructures which are also characterized for 
textural properties like tortuosity factor [73–75].

Depending on the desired electrode material and experimental data, 
different types of active material particles can be considered inside the 
simulations (e.g. NMC [73], Graphite [76]) and the framework has been 
extended for the electrode manufacturing simulations of other battery 
technologies such as ASSBs [77,78]). The additional electrochemically 
inactive materials such as the conductive additives and the binder can 
also be considered explicitly in this modeling framework, through an 
entity named as Carbon Binder Domain (CBD) [79]. The data generated 
at each step of the ARTISTIC pipeline are further utilized for 
manufacturing process optimization (inverse design) via the use of 
various AI tools [26,80–85]. In a nutshell, by leveraging pilot line 
experimental data, physics-based simulations at the mesoscale and 
AI/ML, this combined approach demonstrates a powerful tool for 
manufacturing optimization with the goal of reducing scrap rates at 
source [26]. It is important to underline that, because of its mesoscopic 
character, the ARTISTIC approach bridges the gap between the materials 
and the cell device scales.

In terms of leveraging this type of methodology for the development 
of battery cell recycling through digitalization, an idea that comes to 
mind is to get inspiration from this framework and thus create a con
nected modeling pipeline that mirrors the sequential steps of the recy
cling pipeline of interest. However, depending on the type of the 
recycling approach and number of steps utilized, there could be a variety 
of ways of translating this approach to the recycling value chain. For this 
reason, in the following Sections we discuss the perspectives of partic
ular modeling tools and our envisioned use of these techniques in the 
recycling landscape.

3.7. Discrete simulations for recycling digitalization

Since the recycling of the electronic or ionic conductors forming 
electrochemical cells has been the focus of recycling efforts, use cases of 
discrete modeling methodologies applied for electrodes and electrolytes 
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are herein presented. After this brief description, a perspective on how 
these modeling methods could be adapted to describe the recycling 
approaches is discussed.

Within battery cell recycling, a deep understanding of the micro- and 
macroscopic phenomena occurring at each step of the process is essen
tial to identify the parameters with the highest impact, and thus, opti
mize the efficiency and sustainability of the process line. This subsection 
will focus on the simulation of recycling from micro-up to macroscopic 
scales and will shed light on how computational tools can be used to 
optimize our ability to recycle the materials inside the cells.

To narrow down on the possible perspectives inside the wide topic of 
LIBs recycling, for discrete simulations, the light is shed to apply the 
techniques onto the recycling of electrode scraps after undergoing 
coating (as they are envisioned as the scrap with highest rejection rates). 
Hydrometallurgical recycling and direct recycling processes are pro
posed for potential application in this area [86]. On the next subsections, 
perspectives for both recycling methodologies will be discussed.

3.7.1. Perspectives of discrete methods for the simulation of direct recycling 
methods

Scrap recycling is often performed by using high temperatures, but 
even then, binder dissolution remains a problem, as it is a process that 
can take anywhere between minutes and hours [87–89]. To scale up this 
type of recycling methodology, and achieve industry relevance, it is 
important to focus on methods that will target reduced time and energy 
requirements.

Computational approaches represent a cost-effective method to 
study this target requirements and the efficiency of different recycling 
methods. As an example, molecular dynamics simulations of polymer 
dissolution have been already reported [90,91] and can be used to 
simulate structure-property relationships of bulk systems of polymers in 
a solvent [92,93]. Promising work has already been done on the 
computational screening of solvents and temperatures as well as their 
effect on polymer dissolution [94,95].

Such approaches typically consist of generating a polymeric struc
ture with steric interaction and assessing the trajectory of the polymer 
with respect to the solvent quality. Based on the sampled trajectories 
conforming to the simulated ensemble, structural properties can be 
extracted from the resulting topology and conclusions about the disso
lution behavior of a polymer in such a solvent can be reached.

Molecular dynamics simulations can thus be performed to screen 
different binders, relevant to battery production, based on their solu
bility. Based on this, researchers can garner knowledge on material 

behavior, thus allowing them to use their knowledge to minimize energy 
and time requirements to recycle scrap electrode material. In addition, 
free energy calculations can also be promising to simulate the dissolu
tion of the same binders by their use with Monte Carlo simulations to 
determine optimal structure-property relations. In this way, green and 
non-toxic solvents can be computationally screened for their viability.

Zooming out of the molecular approaches, at the mesoscopic and 
macroscopic scales, the usage of hydrodynamic interactions can be 
envisioned to calculate further properties. Coupling of computational 
fluid dynamics (CFD) and DEM appear to be good choices for studying 
certain interactions between materials and target environments or 
experimental conditions. This will allow the improvement of property 
intuition for scientists and engineers and a more targeted approach for 
reducing energy and time requirements for the separation of materials.

3.7.2. Perspective of discrete methods for the simulation of 
hydrometallurgical recycling

The hydrometallurgy approach is used in LIB recycling for recov
ering metals waste materials using aqueous solvents. It consists of a 
leaching, solution concentration and purification, and a step responsible 
for the recovery of metal salts. During leaching, acids or bases are used 
at low temperatures to oxidize or reduce and dissolve the metals. During 
the purification step, the desired metal is separated from impurities. 
Physics-based simulations can be used to computationally model each 
step and to establish optimal properties for hydrometallurgical recycling 
and thereby maximize the rate of metal extraction and even the safety of 
researchers and engineers.

Firstly, the use of molecular dynamics simulations finds its impor
tance in studying metal-ion solvation and complexation processes to 
elucidate how metallic ions interact with aqueous solvent molecules and 
reveal their adsorption to metal surfaces. By performing these simula
tions, one might gain further insight into the surface coverage and ag
gregation of the metal and thus allow for a targeted prediction of the 
separation process. Such simulations have already been performed to 
study gold recovery [96], and are an important element when it comes 
to developing efficient hydrometallurgical extraction processes. By 
further studying thermodynamic quantities and reaction-diffusion pro
cesses, it is possible to analyze the time evolution of the system under 
study and identify reaction pathways [97]. This ultimately allows for a 
better understanding of all the processes involved. ML tools may also be 
a useful addition to learning reaction rates from molecular dynamics 
simulations and ultimately allow for faster solvent screening, thus 
allowing researchers to quickly find suitable solvents for leaching 

Fig. 7. One of the physics-based manufacturing simulation frameworks for LIBs developed in the ARTISTIC project. Based on the experimental formulation spec
ifications (e.g. material and composition), Coarse-Grained Molecular Dynamics (CGMD) is applied to simulate the electrode slurry and its drying, and Discrete 
Element Method (DEM) is used to simulate calendering at different compression degrees, all in a sequence. The physics-based data are further utilized for 
manufacturing optimization using AI tools (inverse design).
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processes [98].

3.8. Hybrid methods

CFD may also be considered as a useful tool to study hydrometal
lurgical processes on a macroscopic level and can be particularly useful 
in helping engineers and scientists to optimize performance and scale of 
these processes to industrially relevant sizes, always targeting more 
efficient and safe processes.

In specific, the use of simulations for stirred tank reactors might help 
to optimize reactor design and thereby to optimize miscibility efficiency. 
Thereby, scientists and engineers can be guided by numerical models to 
develop optimal leaching vessels for better miscibility. Work on such 
optimization processes already exists [99] and has the potential to guide 
researchers in the future.

Furthermore, multiphase fluid models have been used to simulate 
the effects of solid particles present in the aqueous solution on its effect 
on gas-liquid flow as well as heat transfer within the reactor vessel [100,
101]. It could be fruitful to perform parameter studies for materials used 
in hydrometallurgical recycling of batteries to optimize cell recycling. 
Using a fluid dynamics simulation or a coupled CFD and DEM simula
tion, one may simulate the flow of the leaching solution through the 
recycled metal, thereby predicting the concentration of the metals 
within the solvent. To enhance safety of hydrometallurgical recycling, 
CFD simulations may also be performed to understand acid and dust 
pollution occurring during the recycling process and to design emission 
control systems.

Ultimately, it is a worthwhile endeavor to combine both experi
mental and simulated datasets of the structural effects of solvents on 
polymers to create a database of dissolution properties for recycling, like 
the one developed recently by Zhou et al. [95]. On the one hand, this 
will allow scientists to develop an intuition on which solvents can best 
be used to dissolve a given binder. On the other hand, ML approaches 
can then be employed to connect structure-property relations to the 
feasibility of recycling of products and thereby reduce time and energy 
requirements for maximal throughput.

3.9. Continuum methods

Expanding on other modeling tools beyond discrete methods, we can 
find the use of techniques to model the phenomena happening at the 
continuum space. In this regard, we highlight the use of electrochemical 
PBMs, as mathematical representations of the inner workings of a bat
tery cells that consider both physical and chemical phenomena. The first 
works of PBMs applied for battery materials dates back to 1962, when 
the current distribution in porous electrodes was studied by Newman 
and Tobias [102], later referred to also as “Doyle-Fuller-Newman” 
(DFN) models, making reference to the authors [103].

The basis of these models consists of setting up a set of partial dif
ferential equations (PDEs) based on given physics laws, with the purpose 
of predicting the internal behavior of a cell under different conditions 
[104]. A well posed and well-parametrized model can allow to study the 
evolution in time of the internal variables in a way that is not possible 
with current in-operando experimental techniques applied to batteries 
[105]. For example, some internal variables that are possible to track 
areconcentration of the lithium ion in the electrolyte and of its metallic 
counterpart in the active material. Additionally, the potential and cur
rent distributions in both the electrolyte and electrodes can also be 
monitored.

Nowadays, these models are so advanced as they are being used in an 
array of applications ranging from understanding and improving elec
trochemical performance of electrodes, to the design optimization of full 
cells and battery packs. We can highlight the use of these models for 
relating electrochemical performance with manufacturing process pa
rameters of electrodes as shown recently [106].

Going further, PBMs have evolved to account for additional physics 

in addition to tracking the evolution of internal electrical potentials and 
concentrations. As an example, we highlight reviews of collection of 
models that focus on mechano-chemical degradation [107], thermal 
degradation [108], and even real-time state of charge (SoC) and state of 
health (SoH) monitoring for batteries [109].

In the scope of this article, we picture the utilization of PBMs as a 
cost-effective and straightforward method for conducting quality con
trol of the electrochemical properties of electrodes produced from 
recycled materials. Quality control is particularly important in this 
landscape, given that soon, battery manufacturers will be required to 
comply with mandatory minimum levels of recycled metallic elements 
in their products, as stipulated by the European Union [110]. To foster a 
circular and sustainable battery value chain, the inclusion of waste from 
battery manufacturing processes into the production of new batteries 
will also be considered as part of the recycled content. In the ideal case, 
newly manufactured batteries would be made in their entirety from 
recycled batteries, or battery scrap materials. Still, given the 
state-of-the-art, it would be easier to comply with the regulation by 
combining both recycled and pristine electrode materials into a single 
hybrid electrode formulation.

For achieving this idealistic goal of creating electrodes with both 
pristine and recycled active materials could pose two main challenges. 
First one, that the performance of the recycled material can be unsuit
able to meet customer demands (in terms of energy or power). The 
second one, lays in finding the optimal proportion of pristine and 
recycled material, since this procedure could be time consuming and 
may require iterative experimentation.

Electrochemical models could serve as an effective tool to first 
evaluate the performance of recycled products vs. pristine ones, and 
second, select their correct integration into hybrid electrodes. To over
come the first challenge, a model can help to decouple the intricate link 
between the chosen recycling process, the obtained physical and 
chemical properties, and electrochemical performance.

Depending on the goals, degree of accuracy and available compu
tational resources, different model types can be chosen. As an example, 
manufacturers could choose to work with low dimensional models like 
the Single Particle Model (SPM) or Pseudo 2-Dimensional (P2D) model, 
due to their advantage of offering fast, reliable, and computationally 
inexpensive results [105]. However, if structural features and in
homogeneities in electrodes are relevant to the electrochemical perfor
mance, the use of fully resolved 3D models (with defined geometry, like 
shown in Fig. 8), would be preferred, even if they are usually more 
computationally expensive.

Regarding the second challenge for creating hybrid recycled elec
trodes, PBMs could be used as a probe tool to study the electrochemical 
performance of the recycled material alongside the pristine one. A 
crucial role of these models will be to elucidate the electrochemical 
fingerprint of these new hybrid electrodes, since describing each active 
material by a set of coupled equations can allow to decouple the 
contribution of each component to the total measured voltage, following 
the approach of blend electrodes [111–113].

Having discussed these two challenges and how models could help 
introducing digitalization into the recycling process, it is proposed that a 
combined experimental and modeling approach will appear at several 
gigafactories, since companies are realizing that performing full exper
imental studies for a single product are costly, involves complex pro
cedures, and are typically realized in large quantities. Due to the need 
for modeling batteries in an easier and ready-made way, different soft
ware companies have come up with modules, packs or libraries that can 
help to develop different types of electrochemical models [114–116].

3.10. Machine learning methods

ML has emerged as a valuable tool for addressing numerous chal
lenges along the entire battery value chain, albeit with a primary 
emphasis on battery design, manufacturing, and utilization.
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Numerous works have been undertaken to tackle each stage of bat
tery development: from the automatic discovery of complex battery 
mechanisms [117–120], prediction of the rest of useful life (RUL) 
[121–123], evaluation of SoH [124,125], providing insights into battery 
production processes and their interdependencies [81–84,126], guiding 
battery design [127,128], optimizing cycling profiles [129,130], early 
prediction of the battery cell lifetime [131], approximating failure dis
tributions [132] or prediction of lifelong performance immediately after 
cell manufacturing [133].

However, in the context of battery cell recycling, the utilization of 
ML has remained relatively constrained. Only a small number of studies 
have delved into ML techniques specifically targeting various stages of 
the recycling process. This scarcity is often attributed to the inadequate 
availability of comprehensive battery data, especially for batteries that 
have undergone cycles until the EoL stage.

The following sections contain various examples and advantages of 
ML in the field of battery manufacturing followed by some use cases and 
perspectives of ML for its integration in the battery recycling process.

3.10.1. Machine learning and physics-based continuum models
It has been previously highlighted that in regards to LIBs used for 

EVs, there is a clear opportunity for recovering the materials inside these 
batteries by the use of automated processes and intelligent character
izations [134]. As we approach this new era of digitalization, our battery 
modeling tools continue to improve, and the combination of several 
computational tools is expected to maximize the most out of the avail
able experimental data. In here, we identify the combination of con
tinuum PBMs alongside ML methods as one of the most promising 
combinations.

Two different use cases for this particular combination are identified. 
The first case is to use data driven methods like ML in order to exploit the 
results obtained from performing physics-based simulations, while the 
second case relies on the implementation of physics equations into the 
ML architectures to create what is known as “physics-informed” ML 
models. 

(i) Machine learning for exploiting data arising from physics-based 
simulations

Data driven techniques are increasing in popularity due to their 
ability to arrive to accurate and reliable interpolation results. However, 
these types of techniques require big and reliable datasets to do so. In 
addition, obtaining these extensive datasets experimentally, is not a 
trivial task. As an alternative, utilizing datasets coming from validated 
and robust PBMs, would enable the use of ML algorithms.

In the particular LIB context, it is of interest to integrate the results of 
electrochemical modeling results into ML architectures, in order to 
accelerate result acquisition capabilities of the models. This idea has 
been previously explored for PBMs with different levels of complexity. 
For example, a combination of these techniques was implemented by 
Dawson-Elli et al. [135], where researchers studied the use of data 
coming from a P2D PBM to train different ML algorithms like decision 
trees (DTs), random forests (RFs), and gradient boosted machines 
(GBMs). This research highlights the use of these models for time critical 
applications, since introducing ML can increase execution times while 
keeping a high accuracy for predicting discharge profiles.

Another relevant example was presented by Li et al., where a com
bination of techniques was done by training recurrent neural networks 
(RNN) by using a synthetic dataset coming from a P2D model, in order to 
predict SoC, and estimate the internal battery variables at different 
spatial locations [136]. This was achieved by training on a large dataset 
coming from an electrochemical-thermal model. The goal of tracking 
internal concentrations and potentials of both electrodes based only on 
inputs of current, voltage and temperature was achieved, demonstrating 
the ease of use of these types of models for the final user.

A more sophisticated approach was studied by combining a 3D 
physics-based modeling dataset with ML through the use of convolu
tional neural networks (CNNs) by Marcato et al. [137]. In this work, a 
proof of concept of a time dependent discharge simulation of a 3D 
resolved lithium ion battery electrode microstructure was presented. 
This model was key to show that these ML surrogate models are not only 
capable of predicting battery metrics like voltage or current, but also are 
capable of unveiling the dynamics of the battery electrodes by showing 
the evolution of the lithiation on a three-dimensional microstructure.

More recently, another study focused on tracking the SoH of batteries 
under fast cycling conditions was published by Weddle et al. [138]. In 
this work, a synthetic dataset coming from P2D PBMs was used to create 
full cycling profiles. The profiles were posteriorly used to train a deep 

Fig. 8. Illustrative image of the appplication of an electrochemical model to an electrode microstructure.
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learning algorithm to identify the aging modes. Herein, a CNN was used 
to identify the features of the cycling as to map the aging modes. At the 
end, this methodology allowed to build a robust and reliable model to 
enable a rapid, and continuous aging assessment under different 
charging conditions.

All these studies represent an important background on how accu
rate, and fast surrogate models can be built from training ML architec
tures using PBMs datasets as inputs. However, the choice of algorithm 
and the fidelity of the training data will affect the interpolation capa
bilities of the surrogate model, and it is important to mention that all of 
the previously mentioned works have different tradeoffs between ac
curacy, training times and prediction abilities.

For the perspective of exporting this approach into the digitalization 
of the recycling process, it is expected that this hybrid methodology 
proves useful as well. PBMs are expected to be a key component to create 
large datasets and thus accelerate the quality control workflows by 
coupling them with data driven techniques. It is envisioned that to 
accelerate development, a modeling workflow could consist of first, 
performing enough experimental characterizations to parametrize and 
validate a PBM. After that, the obtained data would be fed into a ML 
capable of extracting meaningful results for different conditions and use 
cases. Going further, this coupled approach could also be implemented 
in conjunction with powerful cloud computing power and Internet of 
Things technologies (IoT) with the purpose of creating a sophisticated 
VT experience of the recycling process line.

Expanding on this, the ideal integration of IoT into the recycling 
pipeline would be to equip all machinery with state-of-the-art sensors 
(prioritizing advanced robotics), and the use of in-operando character
ization techniques [134]. In this way, each sequential task of the recy
cling line would be carefully monitored. Advanced cloud computing 
power would give the power to take the real-time inputs measured by 
the sensors and incorporate them into a model that is able to compute 
the predicted performance based on the received inputs.

A ML model acting as a surrogate model of the PBM, will basically 
calculate results based on synthetic data or hybrid datasets (involving 
experimental and synthetic data),[26], and if parametrized correctly, it 
would be able to help the process engineers to make decisions on 
whether to change a step of the process or leave it unchanged according 
to the predicted results. To go even further in the automation dream, 
another model could be coupled to the fully automated line, in order to 
be smart enough to tweak the machine specifications if it detects at some 
point that the measured parameters has a negative correlation to the 
battery performance. In this way, we could have a truly holistic DT that 
can be controlled to get the targeted performance. 

(ii) Physics-informed machine learning

Apart from profiting on ML to accelerate the interpolation pre
dictions of PBMs, there exists another way to integrate physics equations 
into data driven techniques. Physics-informed Machine Learning (PIML) 
is a modeling methodology which combines both PBMs and ML algo
rithms, to improve generalization and extrapolation capabilities, even 
when data is limited [139]. These type of hybrid models are built by 
providing the data driven algorithms with different types of biases 
during the learning process in order to identify solutions that are 
physically consistent [140].

For the particular case of adapting the highly non-linear physics of 
electrochemical models into a complex data driven architecture, in the 
specific case of working with neural networks, is to inform the loss 
functions with the residual of the physical equations. This particular 
approach has been previously discussed in a study of adapting deep 
learning functionalities to solve problems involving PDEs [141].

In the case of LIB cell simulations, the goal is to enable highly ac
curate voltage/capacity predictions while preserving the low computa
tional complexity. If we compare this approach to other models used to 
simulate the voltage profiles of a battery cell, the target performance 

would be achieved by combining the high physics fidelity and low 
volume of needed data that PBMs offer, with the low computational cost 
of the trained ML models to get the best tradeoff between the techniques 
(Fig. 9).

Some examples of this methodology have already been applied to 
batteries, and focus particularly in the domain of estimating the SoH, 
aging, and the RUL of LIBs. Nascimiento et al. demonstrated a hybrid 
modeling tool created by directly implementing physics of discharge 
(Nernst and Butler Volmer equations) into a deep learning approach 
[142]. This hybrid model used deep neural networks (DNNs) along with 
a reduced order PBM to predict the discharge curves, as well as 
end-of-discharge of batteries under different loading conditions. In 
particular, we highlight the high-flexibility of the ML component to 
correct for some of the missing physics and account for uncertainty in 
some model parameters.

Other approaches for introducing physics into an AI architecture 
were shown by Xu et al. [143]. In this research paper, a PIML prognostic 
model was created and coined with the “PIDDA” name. The main ad
vantages when comparing this model —which can forecast the sec
ondary variables of discharge, capacity, and SoH throughout the 
battery’s life— to traditional ML methods, was an improvement in the 
prediction accuracy, and the decrease of necessary input data.

Other examples of PIML models include the use of alternative data 
inputs. In this case, Kohtz et al. showed that a partial charging segment 
under constant current (corresponding to less than 300 s of data) was 
able to be taken as input for a multi-fidelity battery model with SoH 
prognostic capabilities [144]. In this work, it was demonstrated that it 
was possible to estimate the SoH in just minutes by using this hybrid 
approach.

A more recent study, focused on exploring online estimation of 
degradation modes in addition to battery capacity [145]. Thelen et al. 
made this possible by considering differential capacity curves (associ
ated with different degradation modes), as well as inputs of early-life 
experimental and simulated data. The results suggested that this 
approach may enable quick, accurate, and automated online degrada
tion diagnostics of LIBs, for its possible implementation on new gener
ation battery management systems with online estimation capabilities.

The hybrid PIML methodology was used by Shi et al. to model the 
degradation trend and posteriorly obtaining a RUL prediction for LIBs 
[146]. This was achieved by combining a physics-based calendar and 
cycle aging (CCA) model with a long short-term memory (LSTM) layer. 
The main advantage of using the PIML approach in this case, was the 
accurate prediction of the capacity fade by learning the effect of the 

Fig. 9. Comparison of the ML, physics-based, and physics-informed ML ap
proaches for modeling LIB cells. This schematic illustrates the general relative 
physics fidelity and computational cost of prediction for these approaches. A 
dynamic 3D-resolved model is used as an example of high-fidelity physics- 
based approach.
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different operation stress factors on the battery’s health condition and 
degradation.

Posteriorly, Tu et al. demonstrated the use of different hybrid feed
forward neural networks (FNNs) [147]. Two different types of hybrid 
models were studied, and shown to have as high voltage prediction 
accuracy throughout the LIB cycle at different C-rates. It was found 
possible to combine these models along with bulk thermal models to 
predict the electrochemical and thermal behaviors simultaneously. After 
that, an extra awareness of the aging condition was also embedded on 
top, by making the ML informed of the battery’s SoH. The proposed 
frameworks on this work while combining several different models, is 
able to generalize and predict precisely even beyond training datasets. 
The rationale behind this work was to make the neural network 
informed of the battery’s internal state in order to have results that are 
physically sound.

Another work by Ma et al. [148], focused on predicting the rest of 
useful life by the input of a single charging curve. In this study, a DNN 
was informed with the input of a PBM which predicted voltage vs ca
pacity. This PBM was in charge of characterizing the ageing behavior of 
the curves, subsequently, this information was encoded into the pro
gram via the use of a particular parameter set. The main advantages of 
this model were found to be the transferability to various operating 
conditions (C-rates, temperature, active material and even partial 
charging data).

A physics-informed neural network (PINN) was also studied based on 
its capacity to treat both physical information as well as synthetic data 
on the ML performance and the SoH estimation abilities, by Hofmann 
et al. [149]. In this paper, they concluded that a combined dataset was 
the best for the PINN training, since the inclusion of internal states in the 
simulation dataset increases the performance.

Moreover, Wang et al. incorporated a hybrid approach of battery 
PBMs with a LSTM-based network to create a temperature prediction 
model for studying cells throughout their useable life [150]. Parameters 
of the electrical, heat, and thermal models were automatically learnt 
during the training stage. They concluded that temperature prediction 
could be done at different operating conditions and that one of the ad
vantages of the hybridization was the transferability and generalization 
of the model, due to the deeply embedded physics.

Given said that, exploring the use of the PIML approach for the 
digitalization of recycling techniques is expected to aid in the creation of 
relevant recycling models that incorporate the key aspects of PIML into 
traditional data driven tools. This is anticipated to result in models that 
are, relatively, computationally inexpensive and highly accurate, even if 
they are trained with smaller datasets than the ones used for traditional 
ML.

As an example, for modeling hydrometallurgy approaches and 
screening solvents, incorporating physics laws related to solvent disso
lution into a data driven approach could accelerate the acquisition of the 
key parameters to optimize the recycling process. In addition, if we 
consider the scope of direct recycling methodologies, it could be possible 
to come up with different suggestions to apply a hybrid methodology 
like PIML, therefore, it is up to researchers to identify the key challenges 
of each process step, and select the most appropriate modeling tech
nique that can help achieving this goal.

3.10.2. Machine learning for battery sorting
Battery sorting, a process that screens, selects, and regroups batteries 

based on key sorting indices such as capacity and internal resistance, 
proves to be an effective method in reducing inconsistencies among 
batteries and thereby enhancing overall battery performance. Typically, 
battery sorting and regrouping involves two stages. In the first stage, 
sorting indices like capacity and internal resistance are acquired from 
historical or testing data. Subsequently, in the second stage, batteries are 
chosen and regrouped according to specific sorting and regrouping 
criteria and the obtained indices [151].

Establishing an efficient collection system for EoL batteries is a 

fundamental component of a successful recycling strategy [152]. On one 
hand, the disassembly and recovery potential of batteries depend on 
various parameters, including their EoL health state, typically indicated 
by metrics like SoH, SoC, and RUL. Incorrect estimation of these pa
rameters can result in disassembly failures and diminish sustainable 
benefits [153]. On the other hand, the initial phase of the battery 
recycling process, which involves collection and sorting, presents a 
significant challenge due to the substantial variation in the chemistries 
and states of batteries, influenced by their wide application and usage 
scenarios [154]. Therefore, accurately identifying and classifying bat
teries based on their chemistry and state becomes a pivotal step before 
the recycling process can commence.

Sorting methods tailored for rechargeable batteries intended for 
second-life applications have been developed in recent years. For 
example, Schneider et al. introduced a visual inspection method com
plemented by DC electrical measurements to discern batteries suitable 
for reuse across various applications [155]. Additionally, alternative 
non-destructive testing methods have been proposed. Xiong et al. dis
cussed three commonly used methods for aging diagnosis: 
disassembly-based post-mortem analysis, curve-based analysis, and 
model-based analysis [156]. Typically, post-mortem analysis serves for 
cross-validation, while curve-based and model-based analyses offer 
quantitative insights. Pastor-Fernandez et al. explored prevalent 
non-invasive diagnosis techniques such as pseudo Open Circuit Voltage, 
Incremental Capacity - Differential Voltage (IC-DV), Electrochemical 
Impedance Spectroscopy (EIS), and Differential Thermal Voltammetry 
to quantify degradation modes [157]. EIS, ultrasonic testing [158], and 
X-ray computed tomography [159] have also been extensively employed 
for the same purpose. Nevertheless, there are still gaps in achieving 
intelligent testing and sorting for high-throughput processes.

Among the existing methods for battery sorting, ML methods stand 
out with superior merits, which avoid conspiring the complex internal 
electrochemical reactions inside batteries thus establishing the rela
tionship between features and battery capacity directly. In addition, ML 
could achieve fast and reliable sorting on the basis of fast testing data or 
historical data. At present, the application of ML methods in battery 
sorting has made significant strides, gradually surpassing classical 
sorting methods reliant on experimentation. In such approaches, voltage 
curves serve as the primary source of input features [160,161], with LIBs 
being the most commonly studied technology. Moreover, neural net
works emerge as the dominant method [161], varying from simple 
three-layer models (most prevalent) to sophisticated deep learning 
architectures.

One of the most recent examples is the work by Tao et al. [162], who 
embarked on a cathode material sorting initiative for retired batteries. 
They leveraged existing battery data from various collaborators, 
including battery manufacturers, practical application operators, aca
demic research institutions, and third-party platforms. Employing a 
collaborative and privacy-preserving ML approach, they developed a 
federated ML model. This model was trained using only one cycle of 
field-testing data from a unique dataset comprising 130 LIBs spanning 5 
cathode materials and 7 manufacturers. This was accomplished through 
a standardized feature extraction process, without prior knowledge of 
historical operational conditions. The study compared the predictive 
power of their federated ML model with independently learned local 
models, under both homogeneous and heterogeneous battery recycling 
circumstances. To address the heterogeneity issue, the authors proposed 
a Wasserstein-distance voting strategy, which effectively mitigated 
cathode sorting errors to 1 % and 3 %. Additionally, an economic 
evaluation of retired battery recycling was conducted using the pro
posed federated ML framework, highlighting the importance of accurate 
sorting in the recycling process. Finally, the study delved into model 
interpretability, battery recycling implications, and the broader pros
pects of integrating federated ML into future recycling practices.

Xia et al. proposed a novel Lithium Metal Battery (LMB) sorting 
method leveraging two-dimensional sequential features and deep 
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learning [151]. This method comprises a hybrid LSTM-CONV1D model 
(combining long short-term memory unit and one-dimensional con
volutional layer) to estimate the sorting index capacity, alongside a 
cycle-based inference method employing a voting ensemble approach. 
Initially, segments of discharging curves during battery activation are 
generated as training and validation samples. Subsequently, the model 
undergoes training on a segment-based training set and optimization on 
a validation set, facilitated by a greedy strategy. Finally, the model and 
the cycle-based inference method are validated across battery cycles in 
the training, validation, and test sets.

3.10.3. Machine learning for battery disassembly
During the initial phase of disassembly, when the vehicle case is 

removed, the battery packs present varying shapes due to the diverse 
range of EV models available in the market. Furthermore, these battery 
packs comprise complex battery management systems, cooling systems, 
and insulation packages, with the arrangement of these components 
differing among various manufacturers. Additionally, modules and cells 
within the battery pack are arranged and interconnected in specific 
configurations to achieve the desired voltage and capacity, with series 
and parallel connections being commonly utilized, albeit with potential 
variations between EV models and manufacturers [163]. Moreover, 
manual disassembly of EoL LIBs is impractical due to the potential 
exposure of workers to toxic substances such as cobalt, lithium, or 
organic electrolyte, as well as the risk of battery explosion. Such expo
sure can result in significant negative health effects on workers. More
over, manual disassembly is both costly and time-consuming, and it is 
susceptible to noise sensitivity.

As a preferable alternative, automatic disassembly without human 
intervention is advocated for the pre-processing of EoL batteries for the 
subsequent recycling process.

Following automatic disassembly, Lu et al. [164] demonstrated a 
cyber-enabled and ML-enhanced battery disassembly system. The sys
tem utilized computer vision to classify different types of batteries based 
on their brands and sizes. Real-time temperature data captured from a 
thermal camera was then combined with a data-driven prediction model 
to forecast cutting temperature patterns. Subsequently, a closed-loop 
control mechanism was implemented to prevent temperature spikes by 
timely adjustments to cutting variables. Moreover, quality control was 
ensured through the use of a computer vision model to detect and 
mitigate cutting defects.

The value of AI in the disassembly steps has been also thoroughly 
assessed and confirmed through a systematic review conducted by Meng 
et al. [165]. The review demonstrates that AI holds significant potential 
to enhance the entire EV-LIB disassembly process, contributing to the 
establishment of a sustainable circular economy within the EV-LIB in
dustry. AI’s primary appeal lies in its capacity to address safety con
cerns, accommodate diverse battery types, and navigate uncertainties 
inherent in the disassembly process. By leveraging AI, disassembly ef
ficiency and adaptability can be improved, while pollution and hazards 
can be minimized, ultimately leading to enhanced profitability. The 
review identifies and discusses both the opportunities and challenges 
associated with intelligent EV-LIB disassembly. It highlights areas such 
as EV-LIB state prognostics, disassembly planning and decision-making, 
and target detection as particularly promising for future research and 
development towards an intelligent era. However, challenges persist in 
achieving extensive autonomy in EV-LIB disassembly due to inherent 
limitations in AI, as well as the mechanical and chemical complexities of 
EV-LIBs, and concerns surrounding sustainable benefits. Practical in
sights and forward-looking perspectives are provided to advance intel
ligent EV-LIB disassembly, including the analysis and comparison of 
primary intelligent methods in the field. The review emphasizes the 
importance of carefully selecting and applying intelligent methodolo
gies and techniques in EV-LIB disassembly, proposing a comprehensive 
framework to guide this process. Moreover, the review suggests remote 
human-robot collaboration with learning capabilities as a pragmatic 

approach to address safety and uncertainty concerns. In summary, Meng 
et al.’s systematic review underscores the transformative potential of AI 
in EV-LIB disassembly, while also highlighting the need for thoughtful 
consideration of challenges and practical implementation strategies to 
realize its full benefits.

3.10.4. Machine learning and knowledge graphs
To enhance several aspects of ML, Knowledge Graphs (KGs) can serve 

as a tool to directly impact data preprocessing in scenarios requiring the 
exploit of diverse, dynamic, and large-scale data collection [166]. They 
do so by automatically constructing data pipelines based on the se
mantic descriptions of data sources and sinks.

When it comes to parameter selection, KGs can automate the opti
mization process of iterative parameter selection by utilizing machine- 
readable process specifications —which typically include parameters 
and expert knowledge annotations— related to correlations. This leads 
to more accurate and efficient selection of these parameters.

In terms of model or method selection, KGs can pick suitable AI/ML 
models based on machine-readable information on data (either small- 
data or big-data) and the availability of models (like physical equa
tion/simulation). This ensures the most effective model is chosen for a 
given dataset.

Furthermore, KGs can improve validation and quality by combining 
expert knowledge with statistical approaches. This not only accelerates 
the usage of AI but also enhances the quality and explainability of the 
models, making them more reliable and understandable.

The use of this tool is expected to play a key role in automation of 
recycling pipelines, since they could help reduce the time and effort 
required in manual data handling. In the recycling field, they have been 
studied for robotic disassembly of EoL batteries of EVs [167], but could 
also prove useful for classification purposes, since a multitude of influx 
battery-derived waste needs to be properly classified into different cat
egories due to composition, SoH, RUL, or other parameters.

3.10.5. Machine learning applied to hydrometallurgical recycling
The hydrometallurgical recycling of LIBs involves the dissolution of 

metallic components, primarily sourced from the active material (a 
mixture of cathodes and anodes). This dissolution is typically carried out 
using mineral acids, followed by metal separation techniques such as 
solvent extraction, ion exchange, and precipitation [152]. Additionally, 
a thermal pre-treatment, involving pyrolysis or calcination, can be 
applied as well [168]. Leaching serves as the initial step in the hydro
metallurgy process, following mechanical or thermal pre-treatment. In 
this regard, only a few examples are found in the literature where ML 
techniques are applied to enhance the leaching process itself. Niu et al. 
proposal is one of these approaches [169]. They utilized ML techniques 
to streamline the efficient leaching of metals from spent LIBs. They 
comprehensively analyzed all operational factors, including 20 input 
features related to the leaching process, encompassing both raw mate
rial properties and technological parameters. These factors were used to 
predict the output variables, namely the leaching efficiency of lithium, 
cobalt, manganese, and nickel. To gather data for ML analysis, the au
thors meticulously reviewed published references spanning from 2005 
to 2022, accumulating a total of 17,588 data points related to the hy
drometallurgy recycling of spent LIBs. To enhance prediction accuracy, 
they employed four ML algorithms: XGBoost (XGB), Random Forest 
(RF), Support Vector Machine (SVM), and AdaBoost. Subsequently, they 
developed and compared 16 models based on these algorithms. Building 
on the optimal models, the researchers designed a user-friendly graph
ical user interface (GUI) to aid researchers in swiftly obtaining metal 
leaching parameters from spent LIBs. This GUI only requires experi
mental measurements of particle size (screening) and waste feed 
composition, eliminating the need for extensive leaching experiments. 
Finally, the reliability of the GUI was verified through a series of 
experiments.

I. Cardenas-Sierra et al.                                                                                                                                                                                                                       



Journal of Power Sources 631 (2025) 236158

15

3.10.6. Machine learning perspectives for recycling digitalization
While ML is currently being studied for the hydrometallurgical 

recycling route, there is still an opportunity to address the preprocessing 
parts of the LIB recycling process, like the mechanical separation, or 
even other recycling processes and techniques such as the pyrometal
lurgical and direct recycling one have yet to be implemented. 

(i) Machine learning applied to mechanical process

Since mechanical processing and other pretreatments are indis
pensable prerequisites preceding the hydrometallurgical treatment of 
batteries, we highlight it as a key research topic to focus for the next 
coming years.

This process involves the separation of metals such as iron, cobalt, 
copper, aluminum, lithium, and nickel (referred in conjunction as black 
matter). The objective of this step is to increase the surface area by 
crushing the components, thereby enhancing the efficiency of metal 
dissolution during posterior acid leaching [170].

Equipment such as rotary shears and hammer mills are employed to 
pulverize battery components. Subsequently, various separation tech
niques are utilized to segregate the metal shreds. These typical steps 
include an initial magnetic separation to remove the steel casing. Sub
sequently, density separation, froth flotation, sieving, and vibrating 
drum screens are additional methods thay may be utilized for metal 
component separation.

However, it’s important to mention that prior to subjecting batteries 
to crushing and other mechanical processes, they must first be deacti
vated and discharged, as performed in the disassembly and pyrometal
lurgical phases. Incorrect execution of this step poses a risk of battery 
explosions or fires. Should the thermal deactivation phase be omitted, 
pulverization can be conducted under cryogenic conditions or in an inert 
atmosphere to prevent metal oxidation and combustion. However, this 
method is considerably costlier [163].

It is envisioned for ML techniques to be applied at a multitude of the 
different steps of the recycling pipeline, however certain proposed ideas 
include the utilization of modeling techniques for improving separation 
of spent battery components of varying chemistries and/or size re
quirements. A recent example of modeling applied to this part of the 
process was shown by Punt et al. [171]: in this reference, the authors 
investigated models for a cutting mill and zig-zag-sifter in conjunction 
with dynamic flow sheet simulations. We foresee that in the future, these 
types of modeling approaches will be complemented by ML techniques 
to further optimize these models, and thus, the overall recycling process. 

(ii) Machine learning applied to pyrometallurgical recycling

In the pyrometallurgy route, the main objectives of this step are to 
deactivate batteries and improve worker safety [13]. This process in
volves a high-temperature furnace, initially emptied and then filled with 
pure nitrogen gas, within this furnace, metals and oxides in the battery 
are melted and converted into a copper, cobalt, iron, and nickel alloy, 
through the use of redox reactions occurring at temperatures of 
approximately 500–600 ◦C.

Subsequent separation processes are needed after the pyrometallur
gical treatment, with hydrometallurgical processes being preferred to 
recover these metals. Aluminum and lithium oxides typically become 
part of the slag and are not recovered. If aluminum is to be retrieved in 
its pure metallic form, the process must be conducted under vacuum 
conditions. Consequently, the output of this process comprises materials 
in the form of alloys, gases, and slag [170,172].

The way computational tools could improve the process of the py
rometallurgical route is to test different process conditions occurring at 
different temperatures, different atmospheres and quantities. Compu
tational thermochemistry approaches like the one studied recently for 
other fields involving metallurgical processes [173] could be applied for 
LIB recycling in conjunction to ML tools in order to further optimize the 

recycling process design while also reducing the energy consumption. 

(iii) Machine learning applied to direct recycling

Direct recycling, based on chemical relithiation methods, presents a 
promising approach to address compositional and structural defects in 
degraded cathodes without sacrificing the embedded energy in the 
materials. This method enables the production of cathodes that are 
directly useable in the assembly of new battery cells, eliminating the 
need to resynthesize cathodes from their precursors. Compared to pyro- 
and hydro-recycling routes, direct recycling offers significant advan
tages in terms of energy consumption, safety, cost, flexibility, and eco
nomic returns, attracting considerable attention from academia and 
industry.

Recently, some researchers reviewed the state-of-the-art direct 
recycling technologies of spent LIBs, placing significant emphasis on 
various relithiation routes and the importance of sustainable recycling 
compared to conventional metallurgical methods. However, critical 
obstacles hindering the practical implementation of direct recycling 
have been overlooked [163].

In this regard, ML can propose a streamlined optimization of the 
challenges that keep direct recycling from being scaled up. Collecting 
data of experiments dealing with direct recycling methodologies and 
using ML for identifying the most relevant parameters for a recycling 
potential prediction remains as an area of opportunity in this sector.

Ultimately, it is important to highlight that AI, specifically ML 
methods, represent important tools for screening the most ideal condi
tions for a specific step during the recycling process. However, the ca
pacity of ML to identify potential synergies between different steps of 
the pipeline should not be overlooked.

4. Lithium-ion battery cell recycling digitalization via funded 
initiatives

In the pursuit of achieving a fully functional, sustainable and inter
connected manufacturing-recycling LIB value chain, the efforts for 
standardization, sustainability aspects and different funded initiatives 
have been put into place to drive innovation. In this section, we aim to 
describe the sustainability and standardization aspects that are a 
cornerstone for the design of the present recycling processes and high
lights the key public research initiatives that are shaping the future of 
the processes that will established in the following years.

The European Commission champions projects that align to the 
sustainable development goals, and the main aim here is to establish 
safe, and economically sustainable battery cell recycling supply chains. 
In terms of improving the way in which our current LIB affects the 
ecosystem, we find different topics of interest that involve the partici
pation of people from different fields.

Out of the most important areas that are currently being targeted we 
find the initiative of developing a robust, flexible, and sustainable direct 
recycling processes for various waste streams, since direct methods aim 
to recover the materials directly from electrodes of battery cells without 
shredding components, enhancing overall resource efficiency.

Moreover, projects on the development of an all-encompassing 
process, capable of treating all types of batteries are positively valued. 
This comprehensive ensures flexibility in managing diverse battery cell 
chemistries and states, contributing to a more efficient and inclusive 
recycling ecosystem.

Additionally, other efforts are focused on optimizing the collection 
and reversed logistics to enable efficient diagnostics. This is targeted due 
to the potential that streamlining these processes has on the identifica
tion and handling of batteries, facilitating their recycling and reducing 
environmental impact. This topic also involves the general population, 
since the education of citizens is necessary for their participation in 
collection programs.

Furthermore, the projects prioritize decreasing the carbon footprint 
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of innovative battery systems. By implementing sustainable practices 
throughout the battery life-cycle, environmental impact is minimized, 
supporting a transition to cleaner energy solutions.

Lastly, projects promoting the development of novel biotechnolog
ical processes for producing various bio-ionic liquids and optimizing 
their extraction methods are currently ongoing. These innovations offer 
sustainable alternatives for battery cell production, contributing to a 
greener and more circular economy.

4.1. Standards for achieving recycling

In order to achieve a holistic incorporation of battery cell recycling 
into the LIB value chain, effectively implementing standardization 
measures is key to ensure the selection of the right recycling techniques, 
and most of all, drive innovation in the automatization sector. This in 
turn, will also help to overcome the main concerns of scalability and 
safety of the recycling processes.

From this point of view, the development of a digital product pass
port that helps to effectively label and identify a product of the battery 
industry by means of automation is a key focus of European projects like 
CIRPASS and DigiPass [174,175]. These initiatives aim to streamline 
and digitize product information, enhancing data transparency, trace
ability and interoperability.

Battery-specific implementations are being explored in the Batter
yPass [176] and BASE projects, which are working towards creating a 
property list and architecture draft. A categorized list of the properties 
that are taken into consideration within BatteryPass, is visualized in 
Fig. 10. As an example, we highlight that this initiative aims to make 
available the data that the material composition and manufacturer in 
addition to more detailed information like the performance and dura
bility of the product, it’s carbon footprint, the circularity and resource 
efficiency of the product, etc.

Looking forward, the plan is to define a common language for all by 
annotating ontology terms to the different product properties, such as 
the BattINFO and BVCO initiatives [177] were set to do inside the 
BIG-MAP project. This will expand the scope beyond final product data 
and offer also a zoomed-out value chain perspective.

As evidenced by the Catena-X prototype implementation, the 
execution of these battery standardization projects should also take into 

account the Gaia-X and International Data Spaces reference architec
tures and make use of uniform linked data schemas [178]. Following this 
approach will ensure a comprehensive and integrated digital solution for 
creating useful product passports, that can help to achieve a truly 
automated, safe and efficient pipeline through automation.

4.2. A bird’s eye overview of public funded projects in the EU

The European Commission and public bodies across EU countries are 
significantly investing in projects related to battery cell recycling. This 
focus aligns with the EU’s broader goals of promoting sustainability, 
reducing environmental impact, and advancing the circular economy. 
Since 2019, 145 projects have been recounted both at EU and national 
levels [179]. Several funding mechanisms are available. For example, at 
EU level, Horizon Europe, H2020, and the European Innovation Council 
are the main funding mechanisms. At the national level, each country 
has their own funding bodies. One can mention the “Agence National de 
Recherche in France” (ANR) in France [180], the “Bundesministerium 
für Bildung und Forschung” (BMBF) in Germany [181], the “Centro para 
el Desarrollo Tecnológico y la Innovación” (CDTI) in Spain [182], or “UK 
Research and Innovation” (UKRI) in the United Kingdom [183]. The 
contribution of each country to different types of LIB recycling projects 
is visually shown in a pie chart Fig. 11.

The granted projects cover the points established in the next sections.

4.2.1. Battery repurposing and second life applications
Around recycling and circular economy, one alternative initiative 

focuses on the development of second-life batteries. The EoL of an EV 
battery is considered when less than 20 % of its initial capacity is lost 
[184]. For this reason, the reuse of these batteries in stationary energy 
storage applications is one of the alternatives studied to improve the 
lifetime and total cost of EVs batteries. Different testing and verification 
methods have been developed to determine the potential reuse of these 
batteries.

By refurbishing and repurposing these batteries, valuable resources 
are conserved, and environmental impact minimized. As an example, 
repurposing batteries from EVs into other sources enables their use in 
smaller-scale transportation solutions, bolstering urban mobility sus
tainability. It also supports battery reuse in medical devices, recognizing 

Fig. 10. Visualization of the attributes listed and categorized by BatteryPass. Created from BatteryPass “Data Attribute Longlist”, available online under CC BY-NC 
4.0 license [176].
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the potential to extend their lifespan and reduce waste in healthcare.
Furthermore, several projects emphasize smart sorting and disman

tling systems for LIBs. These systems automate classification and 
disassembly, identifying and separating functional battery modules for 
reassembly into new batteries for second life applications. It is necessary 
to design a methodology for the rapid identification of EoL batteries as a 
useful tool for collection, handling and pre-processing infrastructures. 
The value of the active material content, recyclability and remanu
facturing costs for a second use determine the best management option 
for EoL batteries (second life or recycling).

Additionally, project calls are focused on advancing streamlined 
collection and reversed logistics for automatic dismantling of EVs and 
stationary batteries. Optimizing collection and logistics processes aims 
to facilitate efficient dismantling and repurposing, promoting circular 
economy principles in the battery industry. Through these initiatives, 
the European Commission and other national public funding bodies 
drive innovation in battery reuse and repurposing, contributing to 
resource conservation, waste reduction, and the transition towards a 
more sustainable and circular economy.

4.2.2. Recovery and reuse of battery materials
Innovative projects to enhance the sustainability and efficiency of 

battery cell recycling and reuse have been funded. These initiatives 
focus on key areas to improve the life-cycle management of batteries. 
The concepts of safe and reliable remanufacturing-reuse-recycle plat
forms are largely adopted in projects, facilitating systematic and secure 
battery handling throughout their life-cycle. The reuse and recycling of 
EoL batteries is another critical focus. Advanced techniques to refurbish 
and repurpose batteries aim to extend their lifespan and reduce waste. 
Specifically, the recovery of lithium as battery-grade lithium hydroxide 
monohydrate is promoted to ensure high-purity lithium can be reused in 
new batteries, maintaining the supply chain and reducing reliance on 
raw materials.

The recovery and reuse of graphite electrodes are also prioritized, 
enabling reintegration into new battery cell production. Public funding 
bodies advocate for green, low-cost, and low environmental impact 
recycling methods for various battery cell chemistries, including NMC, 
LFP, and sodium-ion batteries (SIBs). These methods aim to minimize 
environmental impact and reduce costs while efficiently recovering 
valuable materials.

Finally, the recovery of solvent and electrolyte from EoL batteries is 
encouraged to enhance the overall efficiency and sustainability of the 
recycling process. Through these efforts, the European Commission is 
fostering a robust and sustainable battery recycling ecosystem, 

addressing environmental concerns and resource security for the future.

4.2.3. Innovative recycling processes and technologies
Public funding of European countries and the European Commission 

are promoting groundbreaking initiatives to revolutionize battery 
recycling, promoting sustainability and efficiency in waste manage
ment. Central to these efforts is the development of new recycling pro
cesses designed to enhance resource recovery and minimize waste. 
Amongst the granted projects, one significant focus is on hydrometal
lurgical methods to process black mass, which allow for the efficient 
extraction of critical metals like lithium, cobalt, and nickel from EoL 
batteries. Cleaner alternatives offer higher recovery rates and reduce 
environmental impact. Additionally, microwave-assisted treatment of 
battery waste is being promoted to improve material recovery efficiency 
and reduce energy consumption. Projects aim for replacing pyrometal
lurgical recycling with water-based processes to eliminate undesired 
side products, making recycling safer and more environmentally 
friendly. The use of molten salts as solvents in dissolving battery cath
odes is another innovative approach proposed, enabling selective re
covery of metals and enhancing purity and yield. Efforts to promote low- 
cost and green recycling processes are aimed at recovering materials 
from various battery types, reducing the carbon footprint, and 
improving economic sustainability. Advanced pre-treatment techniques 
like electrohydraulic fragmentation and ultrasonication are also riding 
high in Europe, which ensure high material purity and efficiency. 
Furthermore, several public funded projects support the development of 
disruptive biotechnological processes for bioleaching and metal recov
ery from batteries. Utilizing microorganisms, these methods provide a 
sustainable and environmentally friendly alternative to traditional 
extraction techniques.

4.2.4. Development of circular economy solutions
National funding entities and the European Commission on top are 

driving forward initiatives aimed at revolutionizing the battery industry 
towards circular economy principles. One significant focus is on devel
oping and demonstrating new circular economy solutions tailored spe
cifically for the European battery value chain. These solutions seek to 
establish closed-loop systems that minimize waste and maximize 
resource efficiency throughout the life-cycle of batteries. In addition, 
funded projects support the development of innovative processes for 
waste remanufacturing, leveraging techniques such as hydrothermal 
and microwave treatments. These processes aim to extract valuable 
materials from waste streams, promoting sustainability and reducing 
reliance on raw materials. Moreover, the Commission emphasizes design 

Fig. 11. Distribution per country of projects on battery recycling topics funded by the European Commission or other public funding bodies among 145 projects.
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considerations for EoL batteries such as the design-for-recycling 
concept, ensuring that batteries are designed with recyclability and 
sustainability. By incorporating EoL considerations into battery design, 
the Commission aims to facilitate easier and more efficient recycling 
processes. Projects are also addressing the development of advanced 
methods and algorithms to optimize the recovery of mixed waste 
streams of batteries. These methods enable more precise sorting and 
processing of battery components, increasing resource recovery and 
minimizing waste. Furthermore, projects aim at establishing a safe, 
economically sustainable battery cell recycling supply chain. This in
cludes initiatives to improve collection and reverse logistics processes, 
ensuring efficient diagnostics and transportation of batteries for recy
cling. Finally, projects are committed to decreasing the carbon footprint 
of innovative battery systems. By promoting the adoption of environ
mentally friendly practices and technologies, a major outcome would be 
to minimize the environmental impact of battery cell production and 
recycling processes.

4.2.5. Automation and robotics in recycling
Europe is spearheading initiatives aimed at optimizing the reverse 

logistics of batteries and revolutionizing the dismantling and sorting 
processes for EoL batteries. One key focus area is the development of 
more efficient and universal methods for battery discharge and initial 
diagnosis during reverse logistics (from end-users back to the manu
facturer). By streamlining these processes, projects aim to improve the 
efficiency of battery cell recycling and minimize delays in the trans
portation and handling of EoL batteries. The transportation of these 
batteries is especially important, since in literature, even if the cost es
timates vary widely, analysis of different studies has identified an 
average 41 % of the total recycling cost being associated to trans
portation [185].

Moreover, public funding bodies are investing in the deployment of 
robotic systems designed for flexible product manipulation, disman
tling, and sorting. These advanced robotic systems enable precise and 
efficient disassembly of battery packs, maximizing resource recovery 
and minimizing manual labor. Such development goes in line with the 
implementation of smart sorting and dismantling systems capable of 
automated classification and dismantling of LIBs. These systems 
leverage cutting-edge technologies to identify and separate battery 
components, optimizing the recycling process. Furthermore, there is a 
strong need to establish pilot lines equipped with robotized and auto
mated disassembly of battery packs. These pilot lines serve as testbeds 
for innovative dismantling technologies, paving the way for scalable and 
efficient battery cell recycling operations. In this view the integration of 
AI into automated dismantling processes, can enable more accurate 
sorting and classification of battery components. AI-driven dismantling 
systems enhance the precision and efficiency of battery recycling, 
improving resource recovery rates. Adaptable and safe dismantling and 
sorting of EoL batteries and components using robotics, ML, and other 
Industry 4.0 technologies are of paramount importance. These advanced 
systems ensure the safe handling and processing of batteries, mitigating 
risks associated with manual dismantling and sorting processes.

4.3. Perspective on the role of pilot lines in production and recycling 
digitalization

Driven by the upcoming EU regulations, sustainability imperatives, 
and resource security concerns, there is a growing recognition among 
many players in the battery ecosystem of the necessity to investigate 
both battery production and recycling processes. Such investigations are 
inherently risky and costly when conducted directly on production 
systems. To address these challenges, two key strategies are essential. 
First is the focus on digital tools and methods to accompany in
vestigations, as outlined in this paper. Second is the use of R&D pilot 
lines to develop, employ, and test innovations, underscoring the critical 
role of pilot lines in this context. For this reason, this paper considers 

that investing in pilot lines as well as in funded projects and standard
ization initiatives, is essential.

Pilot lines are indispensable within this ecosystem, providing a 
versatile platform for the development, validation, and optimization of 
the innovative methods and tools discussed herein. They serve as a 
testbed for the methods outlined in this paper, offering the necessary 
data to implement tools like model-based control strategies and ML- 
driven techniques.

Within this role, the scope of research topics covered by pilot lines 
continues to expand, necessitating more interdisciplinary research and 
development efforts. To maximize their effectiveness, pilot lines must 
integrate expertise from digitalization specialists, facilitating the 
development and calibration of models with different degree of 
complexity.

Effective knowledge and data exchange are paramount, requiring 
organized platforms for collaboration. This can be achieved through 
joint projects or networks of pilot lines, such as the LiPLANET network 
[186], which has brought together the experts contributing to this 
paper.

In summary, pilot lines play an essential role in: 

(i) Generating the necessary data for the development of digitali
zation tools for production and recycling;

(ii) Acting as a testbed for the technological advancements from the 
digitalization domain;

(iii) Establishing platforms for knowledge exchange by connecting 
expert’s production, recycling and digitalization R&D;

(iv) Fostering interdisciplinary collaborations and transdisciplinary 
R&D.

5. Conclusions

The purpose of this article has been to guide both research and in
dustry towards more sustainable battery development by emphasizing 
the key role of digitalization to achieve a fully circular battery economy. 
We envision that the inclusion of recycling from the initial stages of the 
electrode and cell production by the use of state-of-the-art modeling 
techniques, represents a promising topic inside the vast LIB field.

When it comes to processing EoL and waste LIB cells, three main 
recycling approaches have been found useful. Currently, the state-of- 
the-art techniques concern hydrometallurgy, pyrometallurgy or direct 
methods. However, the choice of the technique will be mainly decided 
on the cost-effectiveness which is in turn based on the targeted electrode 
chemistry, the number of steps in the process, energy expenditures, and 
desired final product.

Even if these techniques are quickly evolving, we consider that there 
are still many opportunities for improvement in the recycling process for 
all aforementioned techniques, specifically in the areas of safety and 
handling, as EoL batteries are regarded as hazardous, explosive, and 
corrosive waste. By introducing the use of advanced robotics empow
ered with AI, and sensors to automate the recycling process in a smart 
fashion, a part of the risk might be reduced, and its development 
accelerated.

To achieve the complex goal of seamlessly integrating recycling into 
the already complex batterymanufacturing process, it is necessary to 
take advantage of current technology and look forward to the evolution 
of the industrial processes. In the past decade, advances in 
manufacturing processes and the introduction of concepts such as Smart 
Manufacturing and DTs have highlighted the possibility of real-time 
process control through the implementation of an intricate network of 
sensing and monitoring devices.

In here, we propose that focusing on recycling methods should be 
among the next priorities of digitalization efforts, due to its pivotal role 
for achieving a circular battery economy. A digital transformation is 
crucial, and by steering research on this topic, we can anticipate the 
needs of the future market.
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The consideration of design, manufacturing and recycling in a ho
listic fashion offers an opportunity to push the boundaries of research 
and innovation. By replicating environments, processes, and phenomena 
in virtual settings, scientists and engineers can simulate complex sce
narios with precision and efficiency. This opens new avenues for 
experimentation, discovery, and problem-solving. As technology con
tinues to advance, digitalization approaches are well poised to revolu
tionize how we invent sustainable products and optimize processes, thus 
promising exciting prospects for future scientific endeavors. The crea
tion of these digital recycling ecosystems will require the integration of 
different modeling tools (applied at different scales). Overall the digi
talization efforts will require an interdisciplinary participation from 
specialists in several scientific domains.

Given that the cell recycling models and cell performance models 
involve the same materials, in this article we suggest that this digital 
transformation can be carried out by evaluating the recyclability of 
battery cells by using the modeling toolkits we currently have for the 
simulation of battery cell manufacturing and performance.

We also provide an analysis of these modeling techniques starting 
from the highest level (process scale) up to the smallest one (material 
level), carefully discussing each modeling approach and then its envi
sioned integration for its application in recycling of LIBs.

In the field of process engineering we identify that in order to inte
grate recycling alongside the state-of-the-art battery manufacturing 
process, multilevel modeling and control-based modeling will be key 
players to enable an early detection of scrap and thus enhance resource 
efficiency. Furthermore, the consideration of recycling under inside a 
single facility, or at least inside the same company, will lead to more 
effective recycling, since battery chemistry of own scrap and/or EoL 
batteries is understood, and resources can be shared between the 
different steps and machinery.

We also find that recycling digitalization could find its inspiration 
from state-of-the-art battery cell manufacturing process model pipelines, 
either by including recycling materials with different parameters into 
this already existing framework, or create a parallel type of framework 
but for the different steps of battery cell recycling processes.

The utilization of more specific modeling techniques was discussed 
by starting with the use of discrete modeling techniques, which find 
their usefulness to model interactions from the micro up to the macro
scale, e.g. CGMD, and even coupling it with other methods like DEM or 
CFD, to get insights at the mesoscopic and macroscopic scales. An 
example of this combination of techniques is discussed for achieving a 
targeted approach at optimizing separation methods for LIB recycling. In 
addition, these simulation techniques could also be used to screen 
different types of green and non-toxic solvents while optimizing for 
lower energy and time requirements.

On a different note, continuum PBMs are also discussed, since they 
provide a window into the internal battery states, which allows for the 
optimization of cycling conditions and electrode design. The study of 
battery performance in connection to manufacturing parameters is one 
of the main focus of the current research. As of right now, a number of 
researchers have shown that modeling pipelines that use of data 
generated by physics-based simulations to train AI surrogate models. 
However, integrating physics-based simulations and AI to create novel 
physics-informed ML approaches, can also be a valuable strategy to 
optimize training data requirements, as we can lower the amount of data 
bias and increase accuracy by using physics equations as biases. As a 
perspective, the utilization of the discussed approaches as a way to 
perform quality control for recycled electrode materials or hybrid 
electrodes containing both pristine active materials and recycled ones is 
proposed as an interesting topic of research.

In addition to the aforementioned modeling methods, another 
important tool for achieving recycling digitalization, relies on harness
ing the power of data driven approaches, in particular those based on AI. 
These techniques, find their predictive power due to the high volume of 
data used to train the models. If applied correctly, these models could 

find their usefulness in multiple different steps of battery recycling. 
However, we emphasize their ability to be used to train robotics to 
perform the most dangerous processes that can expose workers to the 
highest amount of risk, being sorting and disassembly and mechanical 
processing, some of them.

In addition to reducing workplace hazards, ML algorithms are 
envisioned to be used for predicting the outputs of different recycling 
methods, optimize the process, increase yield, in the cases where enough 
data is readily available.

At the end, thanks to the anticipation of a large volume of both EVs 
and consumer products powered by batteries, key players in academia, 
industry and government, have identified the potential of LIB recycling. 
However, the interest on this topic is not only driven by the possible 
economic gains of recycling, but also by the recent introduction of strict 
sustainability policies. A clear example are the directives and regula
tions targeted to batteries in the EU, emphasizing the mandatory use of 
recycled elements like lithium in newly manufactured batteries.

For managing to achieve the complex goal of having a circular bat
tery economy, different funded initiatives have been started. First, 
project initiatives aim to create digital product passports in order to 
streamline the standardization and labeling of different battery prod
ucts. These projects are heavily linked with the definition of a battery 
ontology to define common terms as the goal.

As for the publicly funded projects in the EU, adjacent to battery cell 
recycling, the topics deal with the repurposing and second life applica
tions, and also the recovery and reuse of materials used for battery 
manufacturing. For the projects directly targeting recycling, the focus is 
on studying innovative processes, developing circular economy solu
tions, improving automation and robotics. Lastly, we end by high
lighting the importance of pilot plants as mediums for testing, 
developing, validating and optimizing different recycling techniques, 
generating useful data for digitalization efforts, and fostering interdis
ciplinary collaboration.

Finally, it is important to note that while this article focused on 
discussing perspectives for LIBs recycling digitalization, this approach is 
chemistry agnostic and is also encouraged to ease of recyclability of 
other battery chemistries, e.g. sodium ion batteries, or even to other 
battery technologies like ASSBs.
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G. Mestres, N. Antuñano, Roadmap for sustainable batteries, J. Phys.: Energy 
(2024), https://doi.org/10.1088/2515-7655/AD6BC0, 2024.

[11] T. Zhao, W. Li, M. Traversy, Y. Choi, A. Ghahreman, Z. Zhao, C. Zhang, W. Zhao, 
Y. Song, A review on the recycling of spent lithium iron phosphate batteries, 
J. Environ. Manag. 351 (2024) 119670, https://doi.org/10.1016/J. 
JENVMAN.2023.119670.

[12] D. Amalia, P. Singh, W. Zhang, A.N. Nikoloski, Liberation of valuable materials 
from spent cylindrical lithium-ion batteries via semi-autogenous attrition, Miner. 
Process. Extr. Metall. Rev. (2023), https://doi.org/10.1080/ 
08827508.2023.2259576.

[13] A. Holzer, S. Windisch-Kern, C. Ponak, H. Raupenstrauch, A novel 
pyrometallurgical recycling process for lithium-ion batteries and its application to 
the recycling of LCO and LFP, Metals 11 (2021) 149, https://doi.org/10.3390/ 
MET11010149, 2021, Vol. 11, Page 149.

[14] C. Hanisch, T. Loellhoeffel, J. Diekmann, K.J. Markley, W. Haselrieder, A. Kwade, 
Recycling of lithium-ion batteries: a novel method to separate coating and foil of 
electrodes, J. Clean. Prod. 108 (2015) 301–311, https://doi.org/10.1016/J. 
JCLEPRO.2015.08.026.

[15] D. Latini, M. Vaccari, M. Lagnoni, M. Orefice, F. Mathieux, J. Huisman, 
L. Tognotti, A. Bertei, A comprehensive review and classification of unit 
operations with assessment of outputs quality in lithium-ion battery recycling, 
J. Power Sources 546 (2022) 231979, https://doi.org/10.1016/J. 
JPOWSOUR.2022.231979.

[16] S. Sloop, L. Crandon, M. Allen, K. Koetje, L. Reed, L. Gaines, W. Sirisaksoontorn, 
M. Lerner, A direct recycling case study from a lithium-ion battery recall, Sustain. 
Mater. Technol. 25 (2020) e00152, https://doi.org/10.1016/J.SUSMAT.2020. 
E00152.

[17] M. Kaya, State-of-the-art lithium-ion battery recycling technologies, Circular 
Econ. 1 (2022) 100015, https://doi.org/10.1016/J.CEC.2022.100015.
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[38] Dassault Systèmes, The 3DEXPERIENCE Platform, 2024, p. 2024. https://www.3 
ds.com/3dexperience (accessed May 31, 2024).

[39] IEA, Global EV outlook 2021 Paris, 2021. https://www.iea.org/reports/glo 
bal-ev-outlook-2021 (accessed May 31, 2024).
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