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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• We developed an optimization workflow
for gas diffusion layer microstructure.

• 250 gas diffusion layer microstructures
were used to train a machine learning
model.

• The deterministic learning predicts gas
diffusion layer functional properties.

• We predicted optimal manufacturing
parameters in 4 scenarios.

A B S T R A C T

The Gas Diffusion Layer (GDL) is a vital component within Proton Exchange Membrane Fuel Cells (PEMFCs), playing a crucial role in mass and heat transport.
Enhancing GDL microstructures directly improves transport properties, thereby leading to more efficient and durable PEMFCs. In this study, we developed a novel
machine learning methodology to optimize the GDL microstructure and properties. The developed optimization framework demonstrated high efficacy, with an R2

score ~95 % in 6 out of 7 properties and a R2 score ~90 % for the GDL-Micro-Porous Layer (MPL) contact resistance. We validated our machine learning approach by
comparing the predicted GDL properties to those calculated through digital characterization using physics-based methods from the stochastically generated GDL,
using the optimal manufacturing parameters identified by the optimizer. Our machine learning model predicted accurately 7 GDL properties decreasing the
computational cost from ~3 to 4 h wall time (physical model) to ~3 s wall time. Results show that low fiber concentration accompanied by low compression ratio
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achieve maximum diffusivity and minimum GDL-MPL contact resistance. Furthermore, prioritizing maximum electrical and/or thermal conductivities while mini-
mizing GDL-MPL contact resistance require high fiber concentration with high compression ratio. This optimization strategy shows significant potential for
improving gas transport, water management, efficient current collection, and thermal regulation within PEMFCs.

1. Introduction

Effects of climate change such as scorching heat waves and rising sea
levels are no longer just a looming threat but a reality we face every day
[1]. Greenhouse gas emissions from traditional energy sources, such as
fossil fuels, are pushing our planet to the brink. In 2023, the European
Union embraced a series of commission recommendations aimed at
aligning the EU’s climate, energy, transport, and taxation strategies to
effectively curtail net greenhouse gas emissions by a minimum of 55 %
by 2030 [2]. This initiative is poised to position the EU as the pioneering
climate-neutral continent by the year 2050. The primary objective of the
net zero [3] is to achieve carbon neutrality by significantly reducing
carbon emissions to a level that can be absorbed and stored sustainably
by natural mechanisms and additional carbon dioxide removal methods,
thereby ensuring a balanced atmospheric carbon footprint of zero.
Presently, the energy sector is accountable for approximately
three-quarters of greenhouse gas emissions, thus playing a pivotal role in
mitigating the adverse impacts of climate change. Substituting envi-
ronmentally damaging coal, gas, and oil-based power generation with
renewable energy alternatives holds significant potential for signifi-
cantly mitigating carbon emissions [3]. Hence, shifting to sustainable
energy sources offer a powerful solution in creating a cleaner and
healthier future for next generations.

Proton Exchange Membrane Fuel Cells (PEMFCs) has been studied
for years, as a promising clean energy technology due to its high effi-
ciency, low operating temperature, and most importantly, zero carbon
emissions [4]. This technology is increasingly recognized as a valuable
complement to battery electric vehicles (BEVs). While BEVs currently
dominate the electric vehicle market, PEMFCs offer a viable alternative
for applications where BEVs encounter limitations, such as in
heavy-duty trucks [5]. PEMFCs convert hydrogen as a chemical fuel
directly into electricity by employing two electrochemical reactions:
oxidation of hydrogen in the anode (Eq. (1)) and reduction of oxygen in
the cathode (Eq. (2)):

H2 → 2H+ + 2e− (anode) (1)

½ O2 + 2H+ + 2e− → H2O (cathode) (2)

Electrochemical Eqs. (1) and (2) mainly take place in the heart of the
PEMFC, called Membrane Electrode Assembly (MEA). MEA is composed
of a proton conducting polymer, called the membrane, sandwiched be-
tween the catalyst layers (CLs), a gas diffusion layers (GDLs) and
microporous layers (MPLs) on each side. The GDL is a porous material
that has a good transport capability, allowing mass and heat transport
within its microstructure, ultimately affecting the fuel cell performance
[4]. MPL is a thin, carbon-based coating applied on top of the GDL and
serves as the interface between the GDL and CL. The porous layer, made
up of GDL and MPL, allow gas transport, maintaining water balance and
supporting efficient electrochemical reactions within the fuel cell [6].
The mentioned porous layer is typically a bi-layer carbon-based porous
material made up of a MPL with a usual thickness of 10–100 μm and a
macroporous substrate, called the GDL, with a typical thickness of
150–400 μm [7], depending on the manufacturer, type and compression
level. The GDL should allow the flow of reactant gases (H2 and oxygen)
and product gases to pass through it. The water formed in a cell should
not choke the pores, so they are precoated with polytetrafluoroethylene
(PTFE), which makes the GDL surface hydrophobic [8]. The MPL,
commonly manufactured by intermixing a hydrophobic polymer (PTFE)
with carbon black, enhances water removal rate [9], enhances electrical
connectivity [10], relieves water accumulation by pushing the liquid

water from cathode to anode [11], and improves evaporation in the
electrodes [12,13]. In the upcoming paragraph, we describe some of the
key GDL factors in determining the overall performance and efficiency
of PEMFC.

Porosity of the GDL directly impacts the flow of reactant gases and
ensures uniform distribution to the CL and the removal of water from the
fuel cell. In addition to porosity, the geometric tortuosity and pore size
distribution within the GDL are also critical factors that influence the
overall performance of the PEMFC [14]. Geometric tortuosity of the GDL
in a PEMFC plays a crucial role in its performance. Geometric tortuosity
refers to the ratio of the actual diffusive path length to the geometric
thickness of the porous medium. Hence, geometric tortuosity affects the
transport of gases, liquids, and heat within the fuel cell system. It in-
fluences the permeability, which in turn impact the power density and
efficiency of the fuel cell. Higher geometric tortuosity can lead to longer
diffusive path lengths, affecting the transport of reactants and products
within the GDL [15]. Furthermore, water management within the
microstructure of the GDL is fundamental for facilitating the passage of
water in both vapor and liquid states through its fibers. Therefore,
determining the relative diffusivity of water within the GDL micro-
structure is critical to mitigate flooding by modulating the fiber and
binder concentrations, thereby influencing the porosity of the system.
Integration of hydrophobic PTFE aids in water repellence, thereby
averting flooding; however, excessive drying, which compromises GDL
performance and subsequently affects the performance of the PEMFC,
must be avoided. The diffusivity characteristics of the GDL are para-
mount in influencing the distribution of temperature and water satura-
tion within the proton exchange membrane, consequently impacting
fuel cell performance and longevity. A comprehensive understanding of
diffusivity is pivotal for optimizing GDL design and function, as it
directly governs the interplay among gas, liquid, and thermal dynamics
within the fuel cell [16,17]. In addition, the electrical conductivity of the
GDL directly impacts the power density and efficiency of the fuel cell
system. Higher in-plane resistivity of the GDL can have a negative
impact on the current density in certain areas, while lower resistivity can
lead to improved current density. Additionally, the local current density
in the CL is affected by the electrical conductivity of the GDL [18]. The
thermal conductivity of the GDL in PEMFCs is intricately linked with
water management and thermal regulation. As the electrochemical re-
actions within the MEA generate heat, effective management of thermal
gradients across the single cell and fuel cell stack becomes imperative.
This necessitates the provision of a pathway for heat dissipation from the
MEA to the bipolar plates, ensuring optimal operating temperatures to
prevent membrane degradation. Anisotropic thermal conductivity of the
GDL significantly influences temperature distribution and water satu-
ration within the proton exchange membrane, thereby impacting cell
performance and durability. Notably, proper thermal management is
crucial for sustaining fuel cell performance, as the temperature of the
MEA profoundly influences overall efficiency [19]. Furthermore, it is
observed that in GDLs with notable anisotropic thermal conductivity,
the maximum and minimum temperatures in the cathode CL are pri-
marily contingent upon average current density rather than local current
density [20–24]. And ultimately, increased contact resistance between
the GDL and the MPL causes great ohmic losses by acting as an electron
bottleneck, translating to lower voltage output and overall efficiency. In
addition, it also impedes efficient transfer of electrons between the CL
and the current collector (through the GDL). This ultimately reduces the
PEMFC’s ability to generate electricity efficiently [19]. Hence, a low
contact resistance between the GDL and the MPL is crucial for optimal
PEMFC function [25,26].

R.L. Omongos et al. Journal of Power Sources 625 (2025) 235583 

2 



There exists substantial prior research, encompassing experimental,
computational, and combined experimental-computational studies that
has investigated transport properties of GDLs. Extensive experimental
investigations have significantly advanced our comprehension of mass
transport, heat transfer and structural characteristics of GDLs, contrib-
uting valuable insights to our understanding of GDL performance. For
example, Yoshimune et al. [27] developed an experimental method to
evaluate the through-plane effective diffusion coefficient in GDLs using
an infrared-absorption carbon dioxide sensor. They measured the
Through-plane (TP) effective gas diffusivity of a commercial GDL and
found to be 0.36 ± 0.02 at 25 ◦C which they claimed to be consistent
with the data presented in literature [28–36]. James et al. [37] used
x-ray computed tomography reconstruction to investigate a commer-
cially available GDL under non-homogeneous compression, claiming
that non-uniform compression significantly impacts transport properties
within the material, leading to a roughly twofold difference between the
land and channel regions. In addition, Xia et al. [38] investigated how
GDL thickness and porosity in high-temperature PEMFCs affect electron
conduction and gas distribution. By optimizing these parameters (anode:
80–120 μm, cathode: 140–170 μm; porosity: 35–45 %), the researchers
achieved a remarkable 7.7 % improvement in cell performance,
underscoring the critical role of precise GDL design in maximizing fuel
cell efficiency. Moreover, Pfrang et al. [39] used X-ray computed to-
mography to investigate the thermal properties of several commercial
GDLs without the MPL, concluding that the TP thermal conductivities
are lower than the in-plane (IP) thermal conductivities. Furthermore,
Chen et al. [40] subjected a GDL to a series of freeze-thaw cycles to
assess the impact on its IP electrical resistivity under low compression,
effectively assessing the impact of thermal aging on electrical perfor-
mance. Results indicated weak anisotropy and greatly impacted by the
transformation of carbon fiber connections within the GDL’s porous
structure. Notably, the initial 100 freeze-thaw cycles appeared to have
the most pronounced effect on the IP electrical degradation perfor-
mance, highlighting the sensitivity of the GDL to thermal stress.

Prior research also exists focusing on calculating the TP thermal
conductivity and thermal contact resistance. Nitta et al. [41] investi-
gated the influence of compression pressure on the mechanical behav-
iour and thermal properties of GDLs. The stress-strain response of the
GDL exhibited a unique characteristic: a non-linear region followed by
two distinct linear sections within the 0–5.5 MPa compression range.
Interestingly, the thermal conductivity of the compressed GDL remained
independent of the compression, exhibiting a value of 1.18 ± 0.11 W
m⁻⁻1K⁻⁻1 at room temperature. Moreover, Khandelwal et al. [42]
addressed the challenge of inconsistent thermal conductivity data for
fuel cell materials by employing a precise steady-state technique. The
researchers determined the TP thermal conductivity and contact resis-
tance of various fuel cell components, including the dry Nafion, catalyst
layer, multiple diffusion media, and the thermal contact resistance be-
tween diffusion media and a metal plate as a function of temperature
and pressure. This data will aid in resolving discrepancies in literature
and improve the accuracy of temperature distribution modelling in
operational PEMFCs. In summary, the aforementioned studies demon-
strate a concerted effort to improve the PEMFC technology by address-
ing current limitations through various approaches.

Regarding computational modelling, it has played a significant role
in advancing our understanding of the complex phenomena taking place
in PEMFCs. One approach to digitally generate GDLs microstructures
involves the utilization of stochastic reconstruction methods [43]. Sto-
chastic reconstruction methods encompass computational procedures
employed to generate random or probabilistic depictions of intricate
structures or systems, typically grounded in statistical principles or
random processes. These techniques find widespread application across
diverse domains such as materials science, image processing, and com-
puter graphics, facilitating the simulation and analysis of complex
phenomena. Stochastic reconstruction methods enable the exploration
of a wide range of GDL designs, facilitating the identification of optimal

microstructural configurations that enhance the performance of GDLs,
and ultimately, PEMFCs. Regarding the study of effective transport
properties, the Lattice Boltzmann Method (LBM) has been proven as an
outstanding approach. For example, Sarkezi-Selsky et al. [44] calculated
the effect of PTFE on water transport through the GDL, concluding that
increasing the amount of PTFE led to lower water saturation levels for a
given capillary pressure, suggesting that increasing the hydrophobicity
of the GDL reduces the risk of flooding. In addition, Wu et al. [45]
employed LBM to calculate the effective transport physical properties as
well as the effective thermal and electrical conductivities, diffusivity of
reconstructed GDL/CL and permeability of reconstructed GDL.
Tayarani-Yoosefabadi et al. [7] developed a multiscale modelling tool
for MPLs andMPL-coated GDLs considering various materials. Validated
by experiments, the tool simulated how MPL structure and composition
affect transport properties. They found out that optimizing MPL struc-
ture can improve transport within the fuel cell, and the validated
modelling approach can be a valuable design tool for both MPLs and
GDLs, reducing design cycle time and cost. Moreover, Hannach et al.
[46] employed a numerical model to compute the effective transport
properties of stochastically generated MPL and presented thermal and
electrical conductivities of 0.25 Wm− 1K− 1 and 1400 S m− 1, respectively
at 58 % porosity.

Finally, several studies used machine learning (ML) to optimize the
microstructure of GDL with different goals: for example, Hao et al. [47]
investigated the relationship between the thickness of GDL and output
power. Several studies [48–51] have employed ML followed by
multi-objective optimization techniques to investigate the GDL micro-
structure. The ML models used were supported on convolutional neural
network, extreme learning machine, kernel extreme learning machine,
and response surface methodology and artificial neural network,
respectively. These studies have focused on varying objectives and pa-
rameters, leading to a diverse landscape of findings. However, the pre-
viously mentioned works were restricted to optimizing only one GDL
output (e.g. permeability [48], current density while minimizing tem-
perature [49], power density [50], and again, current density [51]).

And lastly, in the battery field, our research group in Amiens, pio-
neered the multi-objective optimization of battery electrodes. For
instance, in previous publications [52,53] our group in Amiens reported
an innovative approach combining physics-based simulations of lithium
ion battery electrode manufacturing, ML surrogate modelling and
multi-objective Bayesian Optimization. 3D-resolved electrode micro-
structures generated by Coarse Grained Molecular Dynamics and
Discrete Element Method (DEM) were characterized in terms of their
properties and used to derive a ML surrogate model predicting how the
manufacturing parameters (e.g. formulation, calendering degree) impact
the electrode properties. By embedding the ML surrogate model into a
Bayesian Optimizer, it was possible to predict which manufacturing
parameter values need to be adopted in order to maximize and/or
minimize properties (e.g. electrode conductivity, geometric tortuosity
factor, energy density). In another publication from our group in Amiens
a similar strategy was followed to optimize carbon felt electrode mi-
crostructures for redox flow batteries, by combining stochastic genera-
tion of the microstructures, LBM simulation and Bayesian Optimization
[54].

In this paper, we take inspiration from our previous battery works, to
address the complexities inherent to the GDL microstructure, such as the
electrical and thermal conductivities and diffusivity, by extending
further the approach to account for numerous input parameters in
contrast to previous PEMFC/GDL literature. The novelty of our work
herein lies in its proposal of a multi-objective optimization of
manufacturing parameters for improving the properties of the GDL
microstructure (Fig. 1). The optimization process seeks to strike a bal-
ance between minimizing contact resistance between GDL and MPL and
maximizing electrical conductivity, thermal conductivity and diffu-
sivity. Through these optimizations, we aim to achieve enhanced gas
transport, water management, efficient current collection, and thermal
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regulation. This will facilitate the optimal distribution of reactant gases
to the CL, ultimately promoting the overall efficiency and durability of
the GDL and consequently, the performance and longevity of the
PEMFC.

2. Methodology

This work seeks to optimize the microstructural manufacturing pa-
rameters of the GDL with the objective of achieving a reliable perfor-
mance in terms of the targeted transport properties. Our workflow is
composed of 4 stages: data acquisition, data preprocessing, model
training and prediction & optimization.

2.1. Data acquisition

To generate the data, we employed Design of Virtual Experiments, a
systematic approach to study the relationship between multiple input
variables and response output variables. This enabled us to efficiently
select the input parameter values to observe their effect in output
properties. The selected input parameters are: fiber diameter, fiber
concentration, binder concentration, compression ratio, and GDL
thickness.

To achieve a comprehensive exploration of the hyperparameter
space, the Latin Hypercube Sampling (LHS) [55] method was employed,
generating a uniform distribution of 250 unique input parameter com-
binations. Through its systematic selection across each dimension, LHS
mitigates clustering and ensures a more representative sample, leading
to a more robust evaluation of the model. Table 1 depicts the five input
parameters to be optimized and their associated range. The selection of
the latter is informed by established literature values and aims to
replicate the technical properties observed in commercially available
GDLs.

To assess the uniformity of the distribution of the 250 data points
within the hyperparameter space explored using LHS, we present 2D
scatter plots in the supporting information (Fig. S1). The mentioned
scatter plots depict each sample as a point, allowing for a visual in-
spection of how evenly these points are distributed across two

dimensions representing a combination of the input parameters.
Following the generation of a comprehensive set of input parameters
through LHS, the GeoDict software [58] was employed to stochastically
generate microstructures for the GDL. This process involved iterating
through each unique combination of fiber diameter, fiber concentration,
binder concentration (PTFE), GDL thickness, and compression ratio. All
remaining input parameters were held constant across all generated data
points. Consequently, this approach yielded a collection of stochastically
generated GDL microstructures. GDL microstructures domain sizes were
set to: 1000 μm × 1000 μm × thickness, and 2000 μm × 200 μm
thickness after a careful size convergence analysis performed to obtain a
good compromise between computational cost and model accuracy.
Further details about the convergence analysis are shown in the results
section.

The snapshots presented in Fig. 2 depict the progressive micro-
structural development of the GDL at each processing step. The initial
stage (Fig. 2a) illustrates the stochastic generation of fibers based on the
designated fiber diameter and concentration. Subsequently (Fig. 2b),
PTFE as the binder material was incorporated according to the specified
binder concentration and contact angle. It is important to clarify that the
terms fiber concentration and binder concentration used in this study
refer to solid volume percentages. These values allow for the determi-
nation of the initial porosity of the stochastically generated GDL. The
following step (Fig. 2c) involves compression of the structure to the
predefined compression factor. Following the stochastic generation of

Fig. 1. Schematic representation of an electrochemical performance optimization based on fiber concentration, fiber diameter, binder concentration, thickness and
compression ratio to obtain the minimum contact resistance under different scenarios.

Table 1
Input parameter range of the optimization workflow.

Minimum
Value

Maximum
Value

Source reference
number

Fiber Diameter (μm) 6 12 [20,56]
Fiber Concentration
(%)

10 25 [57]

Binder Concentration
(%)

5 10 [57]

Thickness (μm) 280 320 [7]
Compression ratio 0 0.5 [37,48]
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the microstructure, the transport properties of these GDLs were then
digitally characterized through physics-based calculations. This char-
acterization included through-plane (TP) and in-plane (IP) electrical
conductivity, thermal conductivity, and diffusivity. Details on these
physics-based digital characterizations are presented in supporting in-
formation S1-S4.

Finally (Fig. 2d), a MPL with a thickness of 80 μmwas attached along
the negative z-axis. It is noteworthy that the MPL was assumed to be a
porous, homogeneous, and isotropic layer characterized by thermal and
electrical conductivities of 0.25 W m− 1K− 1 and 1400 S m− 1, respec-
tively. These values are adopted from the work of Hannach et al. [46]
Subsequently, the electrical conductivity of the combined GDL-MPL
structures were then reevaluated. This recalculation served as the
foundation for determining the contact resistance between two such
layers. The contact resistance, CR, was quantified using equation (3):

CR=RTotal − RGDL − RMPL (3)

2.2. Data Pre-processing

The full dataset consists of 250 samples containing the 5 input pa-
rameters: fiber diameter (Fd), fiber concentration (Fc), binder concen-
tration (Bc), thickness (Th) and compression ratio (Cr), and its
corresponding 7 output parameters: thermal IP (TIP), thermal TP (TTP),
electrical IP (EIP), electrical TP (ETP), diffusivity IP (DIP), diffusivity TP
(DTP) and contact resistance (CR). Therefore, the dataset is a matrixM of
dimensions 250 × 12, where the first 5 columns correspond to the input
parameters and the last 7 columns correspond to the output parameters.

M=

⎡

⎢
⎣

Fd1
Fd2
⋮

Fd250

Fc1
Fc2
⋮

Fc250

Bc1
Bc2
⋮

Bc250

Th1
Th2

⋮

Th250

Cr1
Cr2
⋮

Cr250

TIP1
TIP2

⋮

TIP250

…

CR1
CR2

⋮

CR250

⎤

⎥
⎦ (4)

M was divided in two matrices, X containing the 5 input and Y con-

taining the 7 output parameters. Out of the total 250 samples, 200 are
randomly taken for training, and the remaining 50 for testing. Therefore,
the full dataset is divided into 4 matrices, Xtrain, Ytrain, Xtest and Ytest .

Xtrain=

⎡

⎢
⎣

Fd1
Fd2
⋮

Fd200

Fc1
Fc2
⋮

Fc200

Bc1
Bc2
⋮

Bc200

Th1
Th2

⋮

Th200

Cr1
Cr2
⋮

Cr200

⎤

⎥
⎦ (5a)

Ytrain=

⎡

⎢
⎣

TIP1
TIP2

⋮

TIP200

TTP1
TTP2

⋮

TTP200

EIP1
EIP2

⋮

EIP200

ETP1
ETP2

⋮

ETP200

DIP1
DIP2

⋮

DIP200

DTP1
DTP2

⋮

DTP200

CR1
CR2

⋮

CR200

⎤

⎥
⎦

(5b)

Xtest =

⎡

⎢
⎣

Fd201
Fd202

⋮

Fd250

Fc201
Fc202

⋮

Fc250

Bc201
Bc202

⋮

Bc250

Th201
Th202

⋮

Th250

Cr201
Cr202

⋮

Cr250

⎤

⎥
⎦ (6a)

Ytrain=

⎡

⎢
⎣

TIP201
TIP202

⋮

TIP250

TTP201
TTP202

⋮

TTP250

EIP201
EIP202

⋮

EIP250

ETP201
ETP202

⋮

ETP250

DIP201
DIP202

⋮

DIP250

DTP201
DTP202

⋮

DTP250

CR201
CR202

⋮

CR250

⎤

⎥
⎦

(6b)

2.3. Model training

In the present work, a random forest regression method was used to
learn the complex relationships between the five input and the seven
output parameters. A random forest fits a number of decision tree re-
gressors (forest) on several dataset sub-samples averaging them with the

Fig. 2. (a) GDL microstructure after addition of fibers. The subsequent microstructures showcase the addition of (b) binder material (PTFE), (c) the compression of
the structure, and finally, (d) the attachment of the 80 μm MPL.
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main goal of reducing the variance, thus, making it less likely to overfit
in comparison to a single decision tree solution [59]. Given the use of
out-of-the-bag evaluation technique in the random forest regression
method, we do not require a validation dataset [60]. The model was
optimized by minimizing the mean square error (MSE).

The model was evaluated on the test dataset by calculating the MSE,
mean absolute error (MAE) and R2 score for all the 7 output parameters.

MSE=
1
n
∑n

i=1
(yi − ŷi)2 (7)

MAE=
1
n
∑n

i=1
|yi − ŷi | (8)

R2=1 −

∑n

i=1
(yi − ŷi)2

∑n

i=1
(yi − yi)2

(9)

where n is the number of samples (50 for testing), yi is the target value
and ŷi is the predicted value. An Adapting Boosting, AdaBoost [61],
ensemble method was used in combination with the random forest re-
gressor to predict the 7 output properties. The AdaBoost algorithm
combined with random forest regressor as weak learning has been pre-
viously used in different regression problems showing minor errors and
strong predictability capacity [62–65]. Details of the ML architecture
and parameters are shown in Fig. S2.

2.4. Optimization

After training the regressor algorithm, a multi-objective optimization
was performed. We defined an objective function, transforming the
multi-objective problem into a single function and denoted by Cf , to be
minimized for the following 4 cases: 1. minimizing contact resistance
(CR) and maximizing diffusivities (DIP & DTP) (Eq. (10)), 2. Minimizing
contact resistance (CR) and maximizing thermal conductivities (TIP &
TTP) (Eq. (11)), 3. Minimizing contact resistance (CR) and maximizing
electrical conductivities (EIP & ETP) (Eq. (12)), and 4. Minimizing
contact resistance (CR) and maximizing simultaneously diffusivities
(DIP & DTP), thermal conductivities (TIP & TTP) and electrical con-
ductivities (EIP & ETP) (Eq. (13)).

C1f =min (CR − DIP − DTP) (10)

C2f =min (CR − TIP − TTP) (11)

C3f =min (CR − EIP − ETP) (12)

C4f =min (CR − DIP − DTP − TIP − TTP − EIP − ETP) (13)

Such functions are dependent on the input parameters and the
deterministic learning performed in the training of the model predicting
the property as a function of a set of input parameters. Given the
different orders of magnitude of the different properties, the determin-
istic learning was trained on data previously normalized allowing to fit
each property value into [0, 1], avoiding any bias induced by the
property values. For the optimization we used a Nelder-Mead (NM)
method [66] together with a grid search (GS) approach. The NMmethod
minimizes the objective function, Cf ,by following an algorithm based on
simplex, checking its evaluation at each vertex of the simplex [67]. In
order to improve the optimized result and trying to decrease the chances
of finding local minima, we also used a GS approach. GS is an iterative
algorithm that will split the input data in various combinations
exploring the output in all of them. Since our input data is a 5D dataset
given the 5 input parameters, we split the range of each input parameter
in 4, forming a grid of 45 = 1024 points, on each of these point the NM

method is performed, keeping only the minimum value of the objective
function. The ML regression model and optimization model were
developed on Python using the Scikit-learn package [68].

Summarizing, in this study we employed a ML approach to optimize
the GDL properties for fuel cell applications. The model, as schematized
in Fig. 3, considers five input parameters and predicts 7 GDL properties
as outputs, including electrical and thermal conductivities (in-plane and
through-plane), diffusivity conductivities (in-plane and through-plane),
and GDL-MPL contact resistance. The complexity of the problem arises
from its multi-dimensional nature, with several interdependent param-
eters. A ML-based optimization strategy is implemented to efficiently
identify optimal parameter sets. This two-step process involves: (1)
establishing a robust correlation function between input and output
parameters, achieved using a combination of Random Forest Regressor
and Ada Boost Regressor, aiming for an R-squared score exceeding 0.9
for all predictions. (2) Utilizing the established correlation function to
guide an optimizer towards optimal parameter sets based on predefined
conditions. The NM method is chosen for this purpose, alongside a grid
search approach to mitigate the risk of getting trapped in local minima.
We then compare the GDL properties using the results from our opti-
mization workflow and the physics-based digital characterization of
stochastically generated GDL microstructure. Both used the optimal
input parameters from the five cases mentioned above as input
parameters.

3. Results and discussion

3.1. Domain size convergence analysis

A convergence test was conducted to verify the representativeness of
the chosen domain sizes for the system under investigation. Eighteen
unique domain sizes with increasing surface area were generated using
ten different random seeds. These domains were evaluated based on the
material properties (IP and TP electrical conductivity, thermal conduc-
tivity, and diffusivity) at 10 % compression with an 8 μm fiber diameter
(Fig. 4) and a 12 μm fiber diameter (Fig. 5). Each calculation showed in
Figs. 4 and 5, as well as the data showed in Table S1 and Table S2 were
obtained using 10 different random seeds for each case. Considering the
12 calculated properties, 6 for the 8 μm fiber diameter and 6 for the 12
μm fiber diameter, the 2000 μm× 200 μm domain present a less than 15
% error in 9 out of 12 properties when compared to the biggest sample
(4000 μm × 2000 μm). Regarding the 1000 μm × 1000 μm domain size,
it presents a less than 15 % error in 8 out of 12 properties when
compared to the biggest sample (4000 μm × 4000 μm).

Additionally, we also analysed the influence of the 10 different
random seeds on the material properties. We calculated the Relative
Standard Deviation (RSD), which is expressed in percentage and is ob-
tained by multiplying the standard deviation by 100 and dividing this
product by the mean. RSD measures the dispersion of a set of numbers
around the mean. A higher RSD indicates a greater deviation, meaning
the numbers are spread further away from the mean. On the contrary, a
lower RSD indicates a smaller deviation, suggesting the numbers are
closer to the mean. We used the RSD to determine the influence of
different random seeds on the material properties. As showed in Table 2,
all RSD values are less than 7 % except for the electrical TP in both cases
with values of 11.4 % and 13.1 % for both domain sizes. In chemical
analysis, a reliable value for RSD is below 10 %. Keeping that in mind,
considering the purposes of this work we consider that our RSD values
indicate that independently of the random seed, the samples produce
statistically identical results. The RSD average along the 6 properties are
3.8 % and 4.91 %, for the 2000 μm × 200 μm and 1000 μm × 1000 μm
domain sizes, respectively. Consequently, the influence of different
random seeds on the material properties appears negligible.

Given the error percentage calculation when compared to the biggest
sample (Table S3) and the non-overlap when different random seeds and
different fiber diameter used, we decided to prepare two datasets: 2000
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μm× 200 μmand 1000 μm× 1000 μm, since both domain sizes show the
least error percentage (<15%) when they are compared with the biggest
domain size (Table S3) in at least 8 of the 12 functional properties.
Additionally, both domain sizes (2000 μm × 200 μm and 1000 μm ×

1000 μm) are computationally less expensive to calculate in comparison
to the biggest domain size sample (4000 μm× 4000 μm). As an example,
characterization of a 2000 μm × 200 μm, 1000 μm × 1000 μm and a
4000 μm × 4000 μm takes 2 h, 2.5 h, and 13 h wall-time, respectively.
Another reason to use both domain sizes to prepare two different
models, is that in the properties’ calculations (Figs. 4–5) it is evident that
there are two clear different levels when checking the properties values
as a function of domain size. Even though we consider as ground truth
the values obtained from the biggest sample (4000 μm × 4000 μm), and
it is the 2000 μm × 200 μm domain size that showed values closer to the
biggest one, we did not discard the 1000 μm × 1000 μm domain size,
and preferred to train two models using a different domain size data set
for each on them and then analysed and compared how different or
similar the outcomes are. Therefore, two deterministic models were
trained for each domain size dataset, and then two optimizers were
prepared to get optimal functional properties for both domain sizes.

3.2. Correlation vs partial correlation: input vs output

A correlation matrix is a useful tool to visualize pairwise correlations
between all variables in a dataset. Its elements represent the correlation
coefficient between two variables, ranging from − 1 (perfect negative
correlation) to 1 (perfect positive correlation), with 0 indicating no
significant correlation. The partial correlationmatrix, on the other hand,
measures the unique association between two variables while holding
constant the effects of other variables. By removing the shared variance
due to other variables, partial correlations reveal the direct relationship
between the variables of interest [69].

Fig. 6 depicts the correlation and partial correlation matrices using
the Pearson method [70], showing how varying the input parameters
(fiber diameter, fiber concentration, binder concentration, GDL thick-
ness and compression ratio) affects the GDL performance. For additional
insight, three properties were also added with respect to the database
used in the training set: Porosity, Geometric Tortuosity, and Resistivity.
The correlation matrix (Fig. 6a) reveals an association between porosity

and both fiber concentration and compression ratio. However, the par-
tial correlation matrix (Fig. 6b) suggests that compression primarily
drives this relationship. This implies that increasing compression leads
to a decrease in porosity. Furthermore, fiber concentration shows a
positive correlation with thermal conductivity, which aligns with ex-
pectations due to the conductive properties of the fibers. Conversely,
fiber concentration demonstrates a negative correlation with diffusivity.
This occurs because increasing the amount of solid materials (fiber and
binder) within the domain reduces the available space for diffusion,
thereby decreasing diffusivity. Similar to fiber concentration, binder
concentration shows a negative correlation with porosity and diffu-
sivity. This is due to the increased amount of solid materials, which leads
to a reduction in both porosity and diffusivity. Additionally, binder
concentration has minimal impact on thermal and electrical conduc-
tivities because of the magnitude of the PTFE loading. Furthermore, as
the compression ratio increases, porosity and diffusivity decrease, while
geometric tortuosity and both thermal and electrical conductivities in-
crease. This is because compressing the domain creates more contact
points between the fibers, thereby enhancing conductivity. Focusing
more on the partial correlation matrix, geometric tortuosity exhibits a
positive/negative correlation with fiber diameter, binder concentration,
GDL thickness, and compression ratio. Conversely, in-plane thermal and
electrical conductivities are positively/negatively correlated mainly
with fiber diameter, indicating enhanced conduction through the fibers
with increasing diameter. Through-plane conductivities, however,
demonstrate a comparable dependence on fiber diameter, fiber con-
centration, and thickness. Binder concentration appears to primarily
impact TP diffusivity, potentially due to its distribution within the GDL
microstructure. Contact resistance displays the weakest correlation with
GDL thickness, as expected since the thickness does not necessarily
affect the contact points between the carbon fibers and the MPL layer.

In summary, increasing fiber and binder concentration generally
reduces porosity while increasing geometric tortuosity. Electrical and
thermal conductivities (IP and TP) tend to rise with increasing fiber
diameter and fiber concentration due to its conductive nature. Re-
sistivity and diffusivity decrease with these changes. The complete
correlation (Fig. S3) and partial correlation (Fig. S4) matrices are pro-
vided in the Supplementary Information for further reference. Similar
trends are also observed in the correlation (Fig. S5) and partial

Fig. 3. Diagram illustrating our research workflow.
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correlation (Fig. S6) matrices for the dataset with a domain size of 2000
μm × 200 μm. The consistency of these trends across different domain
sizes suggests that the correlation and partial correlation analyses are
robust and independent of the specific domain size dataset. This in-
dicates that the underlying relationships between the variables are
preserved regardless of the size of the domain, reinforcing the general-
izability and reliability of the correlation analysis in this context.

3.3. Machine learning performance

Validation metrics were calculated over the testing dataset are MSE,
MAE and R2 score and are reported in Table 3 for the 1000 μm × 1000
μm domain size and in Table S4 for the 2000 μm × 200 μm domain size.
In addition to the current model, which consist of a random forest with
an Ada boost regressor, we also calculated the validation metrics of two
additional models, a pure random forest and a pure Ada boost one.

Validation metrics comparison between these 3 models for the 1000 μm
× 1000 μm domain size (Table S5) and 2000 μm × 200 μm domain size
(Table S6) indicates that the model with best metrics, regardless the
selected domain size, is the random forest with Ada boost, which is the
one we use for the upcoming analysis. Validation metrics results are
supported by the regression plots displayed in Fig. 7 for the 1000 μm ×

1000 μm domain size and in Fig. S7 for the 2000 μm × 200 μm domain
size. In general, considering all the 7 output properties we obtain a high
R2 score, with values over 0.9. These results indicate a high predictive
capability of the deterministic learning to predict the 7 GDL properties
from the 5 input parameters. Additionally, we randomly shuffled the
training and testing dataset 30 different times to calculate the distri-
bution of the R2 score and determined the 95 % confidence interval
(CI95) [71]. CI95 interval adds a statistical examination on how the
deterministic learning prediction behave regarding the training/testing
dataset. In that sense, at a certain threshold, CI95 indicates the metrics’

Fig. 4. Convergence analysis conducted on 3 different GDL properties (IP and TP electrical conductivity, thermal conductivity, and diffusivity) generated using ten
different random seeds using 8 μm fiber diameter.
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variability and likelihood of precision. Regarding our results, the CI95
includes values over 0.9 to 1.0, with a narrowwidth (< 0.03), suggesting
that the deterministic learning is able to predict the different patterns of
the dataset, regardless of the training/testing division, providing accu-
rate predictions.

In order to assess the ability of the model to predict the 7 outputs, we
use a cross-validation approach consisting of taking one subset as test
data, and then train themodel over the remaining subsets. The data set is
randomly split into 5 folds. Table 4 shows the data metrics comparing
training versus testing datasets. Averaged R2, MAE and MSE are
calculated considering the 7 outputs of the model.

3.4. ML optimizer

The optimization results are presented in Table 5 shows the optimal
5 input manufacturing parameters for each of the 4 scenarios: C1f :
minimum contact resistance, maximum TP, IP diffusivity; C2f : minimum
contact resistance, maximum TP, IP electrical conductivity; C3f : mini-
mum contact resistance, maximum TP, IP thermal conductivity; and C4f :

minimum contact resistance, maximum TP, IP electrical and thermal
conductivities and diffusivity.

Building upon the established relationship between GDL
manufacturing parameters and its properties, this work investigates the
impact of these parameters on key GDL performance. As hypothesized,
increasing fiber concentration enhances electrical conductivity but
compromises porosity, thereby hindering diffusivity. Therefore,
achieving optimal GDL properties necessitates a delicate balance be-
tween these parameters. Table 5 presents the optimal manufacturing
parameters predicted by our developed optimizer framework for 2
domain sizes on 4 different cases. C1f , C

2
f , C

3
f , and C

4
f proposed a fiber

diameter of 7 μm within the specified range of 6–12 μm. Notably, C1f
predicted a lower fiber concentration (14.22 %) compared to other
cases, aligning with the expectation of maximizing diffusivity through a
reduced solid concentration percentage. This finding aligns with the
correlation matrices presented in Fig. 7. Additionally, it also predicted a
thickness of 290 μm and a lower compression ratio of 0.1. These char-
acteristics facilitate easier particle transport along the x and z-axes,
leading to lower geometric tortuosity and ultimately, higher diffusivity.
In contrast, Cases C2f and C

3
f exhibited higher fiber concentration values

(17 %). This translates to increased electrical and thermal conductivities
due to the presence of more conductive materials within the GDL.
Furthermore, a higher compression ratio, as observed in these cases,
enhances contact points between conductive materials, further
enhancing conductivity. Finally, case C4f displayed manufacturing pa-
rameters comparable to cases C2f and C

3
f , but with a lower fiber con-

centration. This approach represents a compromise, attempting to
balance diffusivity and conductivity requirements. This analysis un-
derscores the importance of carefully considering the interplay between
GDL manufacturing parameters and their impact on GDL properties for

Fig. 5. Mean values of IP and TP (a) electrical conductivity, (b) thermal conductivity, and (c) diffusivity using 12 μm fiber diameter along with their corresponding
error bars, which represent the standard deviation.

Table 2
RSD calculated for both domain sizes, 2000 μm × 200 μm and 1000 μm × 1000
μm.

2000 μm× 200 μm RSD (%) 1000 μm× 1000 μmRSD (%)

Thermal IP (TIP) 2.2 6.4
Thermal TP (TTP) 2.7 3.1
Electrical IP (EIP) 2.2 5.3
Electrical TP (ETP) 11.4 13.1
Diffusivity IP (DIP) 0.5 0.9
Diffusivity TP (DTP) 1.3 0.7
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optimal PEMFC performance. Furthermore, 2000 μm × 200 μm x
thickness presented a slightly higher binder concentration for the C2f and
a slightly lower thickness, along with C3f . This is to increase the contact
points between the solid materials (carbon fiber and PTFE) in the GDL,
consequently increasing electrical and thermal conductivities.

Fig. 8 presents radar charts depicting the associated GDL properties
for each of the four investigated scenarios. The optimal manufacturing
parameters from Table 5 were used as inputs for a stochastically
generated model, and the results were compared with those obtained
from a deterministic model, shown in Table 6.

Fig. 8a focuses on identifying optimal properties that maximize
diffusivity while minimizing contact resistance. This balancing act pre-
sents a significant challenge. Reducing fiber concentration subsequently
increasing porosity and facilitate particle transport through the GDL
inherently decreases the probability of fiber in contact with MPL. This
disrupts electron transmission between the two layers, consequently
increasing contact resistance. As a result, C1f exhibits a relatively higher
contact resistance (0.14 Ω) compared to the other cases (shown in
Table 6). Fig. 8b and c exhibit very similar trends, which is expected
given the comparable nature of the manufacturing parameters involved.
A slight variation in diffusivity values between these figures is evident,
with Fig. 8b showing slightly higher values than in Fig. 8c. This

difference arises because Fig. 8b prioritizes the optimization of proper-
ties that enhance electrical conductivity while minimizing contact
resistance, leading to marginally higher diffusivity values. In contrast,
Fig. 8c focuses on optimizing thermal conductivity while minimizing
contact resistance. The numerical results corresponding to these figures
are presented in Table 6. Notably, achieving high electrical and thermal
conductivities necessitates a higher fiber concentration alongside a
significant compression ratio. This increased compression enhances
contact points between carbon fibers, ultimately facilitating mass
transport. Finally, Fig. 8d showcases a slightly deviating trend compared
to Fig. 8b and c. To accommodate the requirement for diffusivity, C4f
implements a slightly lower electrical and thermal conductivities by
increasing the thickness of the layer.

It is noteworthy that the optimal GDL configuration obtained is
contingent upon the prioritized GDL properties. This work explored two
scenarios: (1) prioritizing specific properties (C1f , C

2
f , and C

3
f ) and (2)

achieving a balance between all desired properties (C4f ). The weighting
scheme within the optimization framework allows for adjustments
based on the targeted GDL functionality. Consequently, this approach
can generate diverse optimal solutions tailored to specific industrial
applications. Indeed, real-world GDL performance depends on the
strategic manipulation of properties to achieve the most desirable out-
comes. In this regard, the presented optimization workflow demon-
strates its adaptability to various optimization problems across different
application domains.

Table 6 represents the comparison between the GDL functional
properties, and the contact resistance taken from the deterministic
learning and the stochastically generated model at different optimal
scenarios. The distinction between the deterministic learning and the
stochastically generated model lies in their methodologies. Determin-
istic learning is from our developedMLmodel, which predicts the output
properties of the GDL based on input parameters used to generate its
microstructure. On the other hand, the stochastically generated model is
from digital characterization using physics-based methods applied to a
stochastically generated GDL. Scenarios C2f , C

3
f , and C4f exhibited a

percent error of less than 10 %, except for the contact resistance which
showed errors of less than 12 % and Electrical TP of less than 13 %. On
the other hand, C1f demonstrated a percent error of 37 % for the elec-
trical TP, predicting a value of 155 S m− 1. As shown in Fig. 7d, which
illustrates the predictive capability of deterministic learning for the

Fig. 6. Comparison between the correlation matrix (a) and the partial correlation matrix (b) of domain size 1000 μm × 1000 μm.

Table 3
MSE, MAE, and R2 score calculated over the testing dataset and associated with
the fitting of the GDL properties (1000 μm × 1000 μm domain size). The 95 %
confidence interval (CI95) were estimated with a total of 30 random seeds of
training/testing datasets for the uncertainty of the R2 score.

MSE MAE R2 score CI95

Thermal IP,
W m− 1K− 1

4.072 0.084 0.975 [0.980; 0.983]

Thermal TP,
W m− 1K− 1

5.787 0.053 0.943 [0.968; 0.973]

Electrical IP,
S m− 1

4.174 0.022 0.973 [0.978; 0.981]

Electrical TP,
S m− 1

6.527 0.163 0.934 [0.962; 0.970]

Diffusivity IP, % 3.628 0.134 0.971 [0.953, 0.963]
Diffusivity TP, % 3.690 0.124 0.969 [0.947; 0.956]
Contact resistance,
Ω

5.271 0.116 0.921 [0.902; 0.923]
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functional property Electrical TP, there is a lack of data points in the
region beyond 70 S m− 1. Consequently, the accuracy of predictions in
this high-value range is limited. However, improvements in predictive

accuracy are evident in other scenarios. Table 7, in general, presented a
less than 10 % error in scenarios C2f , C

3
f , and C

4
f . Furthermore, C

1
f showed

slightly higher percent error of 40 % compared to the 1000 μm × 1000
μm domain size. In general, there is a consistency between the values
calculated from the physics-based model and the values predicted by the
deterministic learning, showing that the deterministic learning inte-
grated within our optimization framework is able to predict GDL func-
tional properties, and the contact resistance between the GDL and the
MPL, correctly.

4. Conclusions

This work successfully developed a multi-objective optimization
approach for enhanced microstructure of the GDL. A design of virtual
experiments approach was initially utilized to achieve a uniform dis-
tribution of sample points within the defined parameter space. This
space encompassed key GDL manufacturing parameters such as fiber
diameter, fiber concentration, binder concentration, GDL thickness, and
compression ratio. The maximum and minimum values of the input
range properties were defined to be in good agreement with previous
literature reports. Subsequently, these sample points were used as input
parameters to stochastically generate GDL microstructures. From these
generated microstructures, essential output properties were digitally
characterized through physics-based calculations, such as thermal and
electrical conductivities, diffusivity, and contact resistance between the
GDL and the MPL.

Then, a random forest + Adaboost regression model was imple-
mented to establish a ML regression model between the output/input
parameters. The main advantage of the ML model is the tremendous
decrease on the computational cost but keeping a good accuracy in
comparison with the stochastically generated model. Regarding the
computational cost, the ML model requires ~3 s wall-time to predict the
7 output properties, when the physics-based calculations require ~3–4 h
wall-time. In terms of accuracy, the ML model is able to predict the 7
output properties with a R2 score ~95 % in 6 of the 7 properties, and a
R2 score ~90 % for the contact resistance. Given the low computational
cost of the ML model (~3 s wall-time per iteration), it was then inte-
grated into an optimization framework to calculate the optimal
manufacturing parameters to achieve the desired GDL properties, given
certain constraints applied on the framework. The selected optimization
framework consists of a Nelder-Mead (NM) method together with a grid
search approach to identify the optimal set of input parameters that
yielded the desired GDL functional properties. A key aspect in the
optimization framework is the low computational cost of each iteration
coming from the ML model, since the grid search will perform 1024 it-
erations plus the calculation of the NM method on each iteration. The
optimization framework takes ~10 days to get the optimal values. The
dual-method, NMmethod plus the grid search, is performed to overcome
the risk of getting a local minimum.

Furthermore, we showed how to navigate the critical trade-off be-
tween GDL properties. Prioritizing maximum GDL diffusivity and min-
imum contact resistance, which exhibit an inverse correlation,
necessitates the utilization of low fiber concentration and low
compression ratio. On the other hand, achieving maximum electrical
and/or thermal conductivities while minimizing contact resistance
require high fiber concentration accompanied by high compression
ratio.

Fig. 7. True values (x-axis) vs. predictions (y-axis) values of random forest
models trained for the 1000 μm × 1000 μm domain size, showing the accuracy
achieved when predicting (a) Thermal IP, (b) Thermal TP, (c) Electrical IP, (d)
Electrical TP, (e) Diffusivity IP, (f) Diffusivity TP, and (g) Contact Resistance.

Table 4
Average R2, MAE and MSE scores of the cross-validation approach using 5
folds.

Train Test

R2 0.9984 0.9713
MSE 0.0012 0.0199
MAE 0.0261 0.0753
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The developed optimization workflow can be used by the industries
and experimentalists as it presented adaptability to various optimization
constraints across different application domains to meet real-world de-
mands. An illustrative example involves an experimentalist utilizing the
developed ML model to initially validate the optimal combination of
manufacturing parameters needed to achieve the desired properties of a
GDL. This validation occurs prior to the actual fabrication of the GDL.

Key limitations of this study lie in the purely geometrical nature of
the compression algorithm employed. It effectively reduces the pore
spaces between the solid materials (fiber and binder) along the z-axis
until a defined compression is achieved. Consequently, when further
compression is attempted and no spaces left between the solid materials,
the algorithm overlaps the solid materials, leading to a violation of mass
conservation. In addition, this study does not cover the convection heat

Table 5
Optimal manufacturing parameters predicted by the optimizer framework depending on the 4 optimal cases: C1f , C

2
f , C

3
f , and C

4
f .

Domain size, μm3 Fiber Diameter, (μm) Fiber Concentration, (%) Binder Concentration, (%) Thickness, (μm) Compression ratio

1000 μm × 1000 μm x thickness C1f 7.00 14.22 6.00 290 0.10

C2f 7.00 17.00 6.12 290 0.35

C3f 7.09 17.00 6.64 290 0.35

C4f 7.00 16.70 6.00 290 0.35

2000 μm × 200 μm x thickness C1f 7.00 12.37 6.00 297 0.10

C2f 7.00 17.00 8.88 293 0.35

C3f 7.64 17.00 6.62 290 0.35

C4f 7.00 16.99 6.00 297 0.33

Fig. 8. Graphical representation of the 4 scenarios: (a) C1f , (b) C
2
f , (c) C

3
f and (d) C

4
f of the optimized GDL properties obtained through the deterministic-assisted

optimization loop. A radar chart displays the optimized values. Label highlighted in blue is the minimized property, and labels highlighted in red are the maxi-
mized properties. Orange plots represent the results obtained from the 2000 μm × 200 μm domain size. Blue plots represent the results obtained from the 1000 μm ×

1000 μm domain size. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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transfer through the domain. Future research in this area could incor-
porate the mechanical properties as well as the fracture of the materials
within the domain under compression. This can be done using another
methodology, such as DEM. For that, we can apply the approach pre-
viously developed by us [72] to predict particle fracture during elec-
trode calendering. Moreover, this study did not consider the anisotropy
parameter which controls the carbon fiber orientation in GDL. The
reasons for not including it as a manufacturing parameter for the pur-
pose of this study are twofold. First, the computational cost is prohibi-
tive, as we are constrained by available computational time to generate
the database. Second, our focus is on manufacturing parameters
commonly utilized by experimentalists and industry professionals, such
as fiber diameter, fiber and binder concentrations, GDL thickness, and
compression ratio. Additionally, employing alternative optimization
algorithms could enable a more extensive exploration of manufacturing
parameters to identify the optimal properties for generating GDL mi-
crostructures. Despite these limitations, we believe that our approach
paves the way towards efficient digital tools for autonomous optimiza-
tion of GDL manufacturing processes.
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Table 6
Comparison of GDL optimal scenarios for the 1000 μm × 1000 μm domain size using the deterministic learning (A) and the stochastically generated model (B). Both
used the optimal manufacturing conditions as input parameters.

Thermal IP, W
m− 1K− 1

Thermal TP, W
m− 1K− 1

Electrical IP, S
m− 1

Electrical TP, S
m− 1

Diffusivity IP, 102

%
Diffusivity TP, 102

%
Contact Resistance,

Ω

C1f A 1.59 0.14 4534 155 0.57 0.49 0.14
B 1.54 0.11 4383 97 0.59 0.50 0.12

C2f A 2.64 0.37 7227 730 0.40 0.32 0.07
B 2.51 0.35 6857 637 0.40 0.32 0.06

C3f A 2.62 0.38 7171 733 0.39 0.31 0.07
B 2.51 0.35 6852 632 0.39 0.32 0.06

C4f A 2.51 0.36 6956 674 0.41 0.33 0.07
B 2.46 0.33 6730 593 0.41 0.33 0.06

Table 7
Comparison of GDL optimal scenarios for the 2000 μm× 200 μmdomain size using the deterministic learning (A) and the stochastically generated model (B). Both used
the optimal manufacturing conditions as input parameters.

Thermal IP, W
m− 1K− 1

Thermal TP, W
m− 1K− 1

Electrical IP, S
m− 1

Electrical TP, S
m− 1

Diffusivity IP, 102

%
Diffusivity TP, 102

%
Contact Resistance,

Ω

C1f A 1.79 0.11 4857 113 0.65 0.50 0.20
B 1.71 0.09 4627 68 0.67 0.53 0.21

C2f A 3.45 0.38 9315 649 0.41 0.26 0.07
B 3.26 0.38 8760 665 0.40 0.25 0.07

C3f A 3.44 0.36 9442 617 0.45 0.30 0.07
B 3.36 0.32 9154 551 0.47 0.31 0.06

C4f A 3.38 0.31 9107 531 0.49 0.34 0.07
B 3.26 0.29 8896 489 0.49 0.34 0.07

R.L. Omongos et al. Journal of Power Sources 625 (2025) 235583 

13 

https://doi.org/10.1016/j.jpowsour.2024.235583
https://doi.org/10.1016/j.jpowsour.2024.235583
https://science.nasa.gov/climate-change/effects/
https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2030-climate-targets_en
https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2030-climate-targets_en
https://www.un.org/en/climatechange/net-zero-coalition
https://www.un.org/en/climatechange/net-zero-coalition


[4] M.M. Mench, Fuel Cell Engines, first ed., Wiley, 2008 https://doi.org/10.1002/
9780470209769.

[5] C. Cunanan, M.-K. Tran, Y. Lee, S. Kwok, V. Leung, M. Fowler, A review of heavy-
duty vehicle powertrain technologies: diesel engine vehicles, battery electric
vehicles, and hydrogen fuel cell electric vehicles, Cleanroom Technol. 3 (2) (2021)
474–489, https://doi.org/10.3390/cleantechnol3020028.

[6] V.K. Mathur, J. Crawford, Fundamentals of gas diffusion layers in PEM fuel cells,
in: S. Basu (Ed.), Recent Trends in Fuel Cell Science and Technology, Springer New
York, New York, NY, 2007, pp. 116–128, https://doi.org/10.1007/978-0-387-
68815-2_4.

[7] Z. Tayarani-Yoosefabadi, J. Bellerive, E. Kjeang, Multiscale stochastic modeling of
microporous layers and Bi-layer gas diffusion media for polymer electrolyte fuel
cells, J. Power Sources 581 (2023) 233476, https://doi.org/10.1016/j.
jpowsour.2023.233476.

[8] S. Basu (Ed.), Recent Trends in Fuel Cell Science and Technology, Springer, New
York, NY, 2007 [u.a.].

[9] J.T. Gostick, M.A. Ioannidis, M.W. Fowler, M.D. Pritzker, On the role of the
microporous layer in PEMFC operation, Electrochem. Commun. 11 (3) (2009)
576–579, https://doi.org/10.1016/j.elecom.2008.12.053.

[10] D. Malevich, E. Halliop, B.A. Peppley, J.G. Pharoah, K. Karan, Investigation of
charge-transfer and mass-transport resistances in PEMFCs with microporous layer
using electrochemical impedance spectroscopy, J. Electrochem. Soc. 156 (2)
(2009) B216, https://doi.org/10.1149/1.3033408.

[11] A.Z. Weber, J. Newman, Effects of microporous layers in polymer electrolyte fuel
cells, J. Electrochem. Soc. 152 (4) (2005) A677, https://doi.org/10.1149/
1.1861194.

[12] J.P. Owejan, J.E. Owejan, W. Gu, T.A. Trabold, T.W. Tighe, M.F. Mathias, Water
transport mechanisms in PEMFC gas diffusion layers, J. Electrochem. Soc. 157 (10)
(2010) B1456, https://doi.org/10.1149/1.3468615.

[13] A. Thomas, G. Maranzana, S. Didierjean, J. Dillet, O. Lottin, Thermal and water
transfer in PEMFCs: investigating the role of the microporous layer, Int. J.
Hydrogen Energy 39 (6) (2014) 2649–2658, https://doi.org/10.1016/j.
ijhydene.2013.11.105.

[14] X. Han, P. Liu, S. Fan, Y. Liu, Z. Jin, Numerical study of heterogeneous porosity in
gas diffusion layers of high-temperature proton-exchange membrane fuel cells,
J. Appl. Electrochem. 52 (12) (2022) 1733–1746, https://doi.org/10.1007/
s10800-022-01746-2.
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